Skip to main content

Beneficial effects of sevoflurane and desflurane against myocardial reperfusion injury after cardioplegic arrest

Abstract

Purpose

To determine whether sevoflurane or desflurane offer additional protective effects against myocardial reperfusion injury after protecting the heart against the ischemic injury by cardioplegic arrest.

Methods

Isolated rat hearts in a Langendorff-preparation (n=9) were arrested by infusion of HTK cardioplegic solution and subjected to 30 min global ischemia followed by 60 min reperfusion (controls). An additional 18 hearts were subjected to the same protocol, and sevoflurane (n=9) or desflurane (n=9) was added to the perfusion medium during the first 30 min of reperfusion in a concentration corresponding to 1.5 MAC in rats. Left ventricular (LV) developed pressure and creatine kinase (CK) release were determined as indices of myocardial performance and cellular injury, respectively.

Results

The LV developed pressure recovered to 46 ± 7% of baseline in controls. Functional recovery during reperfusion was improved by inhalational anesthetics to 67 ± 3% (sevoflurane, P < 0.05) and 61 ± 5% of baseline (desflurane, P < 0.05), respectively. Peak CK release during early reperfusion was reduced from 52 ± 11 U·min−1·g−1 in controls to 34 ± 7 and 26 ± 7 U·min−1·g−1 in sevoflurane and desflurane treated hearts, respectively. The CK release during the first 30 min of reperfusion was reduced from 312 ± 41 U·g−1 in control hearts to 195 ± 40 and 206 ± 37 U·g−1 in sevoflurane and desflurane treated hearts.

Conclusion

After ischemic protection by cardioplegia, sevoflurane and desflurane given during the early reperfusion period offer additional protection against myocardial reperfusion injury.

Résumé

Objectif

Déterminer si le sévoflurane ou le desflurane offrent des effets protecteurs supplémentaires contre une lésion de reperfusion myocardique après qu’on a protégé le coeur contre l’ischémie par un arrêt cardioplégique.

Méthode

Des coeurs de rats isolés dans une préparation de Langendorff (n=9) ont été arrêtés par la perfusion d’une solution cardioplégique HTK et soumis pendant 30 min à une ischémie globale suivie de 60 min de reperfusion (témoins). D’autres coeurs (18) ont été soumis au même protocole, mais du sévoflurane (n=9) ou du desflurane (n=9) a été ajouté au liquide de perfusion pendant les 30 premières min de la reperfusion selon une concentration correspondant à 1,5 CAM chez les rats. La pression développée dans le ventricule gauche (VG) et la libération de créatine-kinase (CK) ont été déterminées en qualité d’indices de performance myocardique et de lésion cellulaire, respectivement.

Résultats

La pression du VG est revenue à 46 ± 7 % des valeurs de base dans les coeurs témoins. La récupération fonctionnelle pendant la reperfusion a été améliorée par les anesthésiques d’inhalation à 67 ± 3 % (sévoflurane, P < 0,05) et à 61 ± 5 % des données de base (desflurane, P < 0,05), respectivement. La libération maximale de CK au début de la reperfusion a été réduite de 52 ± 11 U·min−1·g−1, chez les témoins, à 34 ± 7 et à 26 ± 7 U·min−1·g−1 dans les coeurs traités avec le sévoflurane et le desflurane, respectivement. La libération de CK pendant les 30 premières min de la reperfusion a été réduite de 312 ± 41 U·g−1, chez les témoins, à 195 ± 40 et à 206 ± 37 U·g−1 dans les coeurs traités au sévoflurane et au desflurane.

Conclusion

Le sévoflurane et le desflurane administrés pendant le début d’une reperfusion, après qu’on a assuré une protection ischémique par cardioplégie, offrent une protection supplémentaire contre les lésions myocardiques de reperfusion.

References

  1. Rosenkranz ER, Buckberg GD. Myocardial protection during surgical coronary reperfusion. J Am Coll Cardiol 1983; 1: 1235–46.

    PubMed  CAS  Google Scholar 

  2. Schlack W, Hollmann M, Stunneck J, Thämer V. Effect of halothane on myocardial reoxygenation injury in the isolated rat heart. Br J Anaesth 1996; 76: 860–7.

    PubMed  CAS  Google Scholar 

  3. Schlack W, Preckel B, Barthel H, Obal D, Thämer V. Halothane reduces reperfusion injury after regional ischaemia in the rabbit heartin vivo. Br J Anaesth 1997; 79: 88–96.

    PubMed  CAS  Google Scholar 

  4. Siegmund B, Schlack W, Ladilov YV, Baiser C, Piper HM. Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture. Circulation 1997; 96: 4372–9.

    PubMed  CAS  Google Scholar 

  5. Preckel B, Schlack W, Thämer V. Enflurane and isoflurane, but not halothane, protect against myocardial reperfusion injury after cardioplegic arrest with HTK solution in the isolated rat heart. Anesth Analg 1998; 87: 1221–7.

    PubMed  Article  CAS  Google Scholar 

  6. Schlack W, Preckel B, Stunneck D, Thämer V. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth 1998; 81: 913–9.

    PubMed  CAS  Google Scholar 

  7. Preckel B, Schlack W, Comfere T, Obal D, Barthel H, Thämer V. Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heartin vivo. Br J Anaesth 1998; 81: 905–12.

    PubMed  CAS  Google Scholar 

  8. Abel FL. Maximal negative dP/dt as an indicator of end of systole. Am J Physiol 1981; 240: H676–9.

    PubMed  CAS  Google Scholar 

  9. Conzen PF, Vollmar B, Habazettl H, Frink EJ, Peter K, Messmer K. Systemic and regional hemodynamics of isoflurane and sevoflurane in rats. Anesth Analg 1992; 74: 79–88.

    PubMed  Article  CAS  Google Scholar 

  10. Ganjoo P, Farber NE, Schwabe D, Kampine JP, Schmeling WT. Desflurane attenuates the somatosympathetic reflex in rats. Anesth Analg 1996; 83: 55–61.

    PubMed  Article  CAS  Google Scholar 

  11. Hearse DJ, Braimbridge MV, Jynge P. The working heart preparation. In: Hearse DJ, Braimbridge MV, Jynge P (Eds.). Protection of the Ischemic Myocardium: Cardioplegia. New York: Raven Press, 1981: 59–63.

    Google Scholar 

  12. Hearse DJ. Cardioplegia: the protection of the myocardium during open heart surgery: a review. J Physiol Paris 1980; 76: 751–68.

    PubMed  CAS  Google Scholar 

  13. Buljubasic N, Marijic J, Stowe DF, Kampine JP, Bosnjak ZJ. Halothane reduces dysrhythmias and improves contractile function after global hypoperfusion in isolated hearts. Anesth Analg 1992; 74: 384–94.

    PubMed  Article  CAS  Google Scholar 

  14. Marijic J, Stowe DF, Turner LA, Kampine JP, Bosnjak ZJ. Differential protective effects of halothane and isoflurane against hypoxic and reoxygenation injury in the isolated guinea pig heart. Anesthesiology 1990; 73: 976–83.

    PubMed  CAS  Article  Google Scholar 

  15. Coetzee A, Skein W, Genade S, Lochner A. Enflurane and isoflurane reduce reperfusion dysfunction in the isolated rat heart. Anesth Analg 1993; 76: 602–8.

    PubMed  CAS  Google Scholar 

  16. Mattheussen M, Rusy BF, Van Aken H, Flameng W. Recovery of function and adenosine triphosphate metabolism following myocardial ischemia induced in the presence of volatile anesthetics. Anesth Analg 1993; 76: 69–75.

    PubMed  Article  CAS  Google Scholar 

  17. Piper HM. Mitochondrial injury in the oxygen-depleted and reoxygenated myocardial cell. In: Piper HM (Ed.). Pathophysiology of Severe Ischemic Injury. Dordrecht: Kluwer Academic, 1990: 91–114.

    Google Scholar 

  18. Lynch C III. Differential depression of myocardial contractility by halothane and isofluranein vitro. Anesthesiology 1986; 64: 620–31.

    PubMed  Article  CAS  Google Scholar 

  19. Kowalski C, Zahler S, Becker BF, et al. Halothane, isoflurane, and sevoflurane reduce postischemic adhesion of neutrophils in the coronary system. Anesthesiology 1997; 86: 188–95.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Preckel, B., Thämer, V. & Schlack, W. Beneficial effects of sevoflurane and desflurane against myocardial reperfusion injury after cardioplegic arrest. Can J Anesth 46, 1076–1081 (1999). https://doi.org/10.1007/BF03013206

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03013206

Keywords

  • Creatine Kinase
  • Halothane
  • Sevoflurane
  • Enflurane
  • Desflurane