Skip to main content
Log in

Concerning the monotone convergence of the method of tangent hyperbolas

  • Published:
Korean Journal of Computational & Applied Mathematics Aims and scope Submit manuscript

Abstract

We provide sufficent conditions for the monotone convergence of a Chebysheff-Halley-type method or method of tangent hyperbolas in a partially ordered topological space setting. The famous Kantorovich theorem on fixed points is used here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.K. Argyros and F. Szidarovszky, On the monotone convergence of general Newton-like methods,Bull. Austral. Math. Soc. 45 (1992), 489–502.

    Article  MATH  MathSciNet  Google Scholar 

  2. I.K. Argyros, On the convergence of a Chebysheff-Halley type method under Newton-Kantorovich hypotheses,Appl. Math. Letters,6, No. 5 (1993), 71–74.

    Article  MATH  Google Scholar 

  3. I.K. Argyros, On the convergence of an Euler-Chebysheff-type method under Newton-Kantorovich hypotheses,Pure Mathematics and Applications 4, No. 3 (1993), 369–373.

    MATH  MathSciNet  Google Scholar 

  4. I.K. Argyros, A note on the Halley method in Banach spaces,Appl. Math. and Comp. 58 (1993), 215–224.

    Article  MATH  Google Scholar 

  5. I.K. Argyros and F. Szidarovszky,The Theory and Applications of Iteration Methods, C.R.C. Press, Inc. Boca Raton, Florida, 1993.

    MATH  Google Scholar 

  6. L.V. Kantorovich, The method of successive approximation for functional equations,Acta Math. 71 (1939), 63–97.

    Article  MathSciNet  Google Scholar 

  7. M.A. Mertvecova, An analog of the process of tangent hyperbolas for general functional equations (Russian),Dokl. Akad. Nauk. SSSR,88 (1953), 611–614.

    MATH  MathSciNet  Google Scholar 

  8. M.T. Necepurenko, On Chebysheff’s method for functional equations (Russian),Usephi Mat. Nauk. 9 (1954), 163–170.

    MATH  MathSciNet  Google Scholar 

  9. F.A. Potra, On an iterative algorithm of order 1.839 ... for solving nonlinear operator equations,Numer. Funct. Anal. and Optimiz. 7 (1) (1984–85), 75–106.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Ul’m, Iteration methods with divided differences of the second order (Russian),Dokl. Akad. Nauk. SSSR,158 (1964), 55–58.Soviet Math. Dokl. 5 1187–1190.

    MathSciNet  Google Scholar 

  11. J.A. Vandergraft, Newton’s method for convex operators in partially ordered spaces,SIAM J. Numer. Anal. 4 (1967), 406–432.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Argyros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyros, I.K. Concerning the monotone convergence of the method of tangent hyperbolas. Korean J. Comput. & Appl. Math. 7, 407–418 (2000). https://doi.org/10.1007/BF03012202

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03012202

AMS Mathematics Subject Classification

Key words and phrases

Navigation