Skip to main content
Log in

Die Anwendung organischwandiger Dinoflagellatenzysten zur Rekonstruktion von Paläoumwelt, Paläoklima und Paläozeanographie: Möglichkeiten und Grenzen

Organic-walled dinoflagellate cysts as paleoenvironmental, paleoclimatic, and paleoceano-graphic indicators: Potential and limits

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Kurzfassung

Organischwandige Dinoflagellatenzysten (Dinozysten) aus marinen Sedimenten werden in den vergangenen zwei Jahrzehnten zunehmend als Indikatoren der Paläoumweltbedingungen, des Paläoklimas und der Paläozeanographie des jüngeren Mesozoikums und Känozoikums genutzt. Da Dinozysten lösungsresistent sind und in fast allen aquatischen Lebensräumen vorkommen, liefern die aus ihnen abgeleiteten Signale eine wertvolle Ergänzung zu den Signalen kalkiger und kieseliger Mikrofossilgruppen wie Foraminiferen, kalkigem Nannoplankton, Diatomeen und Radiolarien. Zum Teil geht die Aussagekraft von Dinozysten zur Paläoum-welt-Rekonstruktion sogar über diejenige kalkiger und kieseliger Mikrofossilien hinaus.

Der vorliegende Beitrag gibt einen Überblick über den gegenwärtigen Wissensstand zur Paläoökologie von Dinozysten. Er diskutiert das Potenzial von Dinozysten zur Rekonstruktion von Produktivital, Temperatur und Salzgehalt in der oberen Wassersäule, zur Verwendung in der Sequenzstratigraphie sowie zur Rekonstruktion der Sauerstoffversorgung im Boden- und Porenwasser mariner Lebensräume und in der Wassersäule epikontinentaler Flachmeere.

Abstract

Over the past two decades, organic-walled dinoflagellate cysts (dinocysts) have been increasingly used as paleoenvironmental and paleoclimatic indicators in marine sediments from the Mesozoic and Cenozoic. Because dinocysts are acid-resistant and abundant in nearly all aquatic settings, the dinocyst-based environmental and paleoclimatic information is complementary to the data derived from calcareous and siliceous microfossil groups such as foraminifers, calcareous nannoplankton, diatoms, and radiolarians. In some cases, the environmental information of dinocysts even exceeds that of calcareous and siliceous microfossils.

The present contribution provides an outline of the present-day knowledge on dinocyst paleoecology. It reviews the potential of dinocysts for the reconstruction of sea-surface productivity, temperature, and salinity as well as their application in sequence stratigraphy. Finally, it evaluates the applicability of dinocysts in reconstructing the paleo-oxygenation in the bottom and pore waters of marine environments and in the lower water column of epeiric seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Allison, P.A.;Wignall, P.B. &Brett, C.T. 1995. Palaeo-oxygenation: Effects and recognition. — In: Bosence, D.W.J. & Allison, P.A., Hrsg., Marine Palaeoenvironmental Analysis from Fossils. — Geological Society Special Publication83: 97–112.

    Google Scholar 

  • Anderson, D.M.;Coats, D.W. &Tyler, M.A. 1985. Encystment of the dinoflagellateGyrodinium uncenatum: temperature and nutrient effects. — Journal of Phycology21: 200–206.

    Google Scholar 

  • Anderson, D.M. &Keafer, B.A. 1985. An endogenous annual clock in the toxic marine dinoflagellateGymnodinium tamarensis. — Nature325: 616–617.

    Google Scholar 

  • Anderson, D.M. &Lindquist, N.L. 1985. Time-course measurements of phosphorus depletion and cyst formation in the dinoflagellateGonyaulax tamarensis Lebour. — Journal of Experimental Marine Biology and Ecology86: 1–13.

    Google Scholar 

  • Anderson, D.M.;Taylor, C.D. &Armbrust, E.V. 1987. The effects of darkness and anaerobiosis on dinoflagellate cyst germination. — Limnology and Oceanography32: 340–351.

    Google Scholar 

  • Ayres, M.G.;Bilal, M.;Jones, R.W.;Slentz, L.W.;Tartir, M. &Wilson, A.O. 1982. Hydrocarbon habitat in main producing areas, Saudi Arabia. — American Association of Petroleum Geologists Bulletin66: 1–9.

    Google Scholar 

  • Backhouse, J. 1988. Late Jurassic and Early Cretaceous palynology of the Perth Basin, western Australia. — Geological Survey of Western Australia Bulletin135: 1–233.

    Google Scholar 

  • Bains, S.;Norris, R.D.;Corfield, R.M. &Faul, K.L. 2000. Termination of global warmth at the Paleocene/Eocene boundary through productivity feedbacks. — Nature407: 171–174.

    Google Scholar 

  • Batten, D.J.;Gray, J. &Harland, R. 1999. Palaeoenvironmental significance of a monospecific assemblage of dinoflagellate cysts from the Miocene Clarkia Beds, Idaho, USA. — Palaeogeography, Palaeoclimatology, Palaeoecology153: 161–177.

    Google Scholar 

  • Batten, D.J. &Lister, J.K. 1988. Early Cretaceous dinoflagellate cysts and chlorococcalean algae from freshwater and low salinity palynofacies in the English Wealden. — Cretaceous Research9: 337–367.

    Google Scholar 

  • Benedek, P.N. von &Gocht, H. 1981.Thalassiphora pelagica (Dinoflagellata, Tertiär): Elektronenmikroskopische Untersuchung und Gedanken zur Paläobiologie. — Palaeontographica (B)180: 39–64.

    Google Scholar 

  • Berger, W.H.;Smetacek, V.S. &Wefer, G. 1989. Ocean productivity and paleoproductivity — an overview. — In: Berger, W.H.; Smetacek, V.S. & Wefer, G., Hrsg., Productivity of the Ocean: Present and Past. — Life Sciences Research Report44: 1–34.

    Google Scholar 

  • Bertrand, P.;Shimmield, G.;Martinez, P.;Grousset, F.;Jorissen, F.;Paterne, M.;Pujol, C.;Bouloubassi, I.;Buat Menard, P.;Peypuquet, J.-P.;Beaufort, L.;Sicre, M.-A.;Lallier-Verges, E.;Foster, J.M. &Ternois, Y. 1996. The glacial ocean productivity hypothesis: The importance of regional temporal and spatial studies. — Marine Geology130: 1–9.

    Google Scholar 

  • Biebow, N. 1996. Dinoflagellatenzysten als Indikatoren der spät-und postglazialen Entwicklung des Auftriebsgeschehens vor Peru. — Geomar Report57: 1–100.

    Google Scholar 

  • Binder, B J. 1986. The physiology of dormany and germination in cysts of the marine dinoflagellateScripsiella trocoidea. — Dissertation Woods Hole Oceanographic Institution, Massachusetts Institute of Technology. — 181 S., Woods Hole.

  • Binder, B.J. &Anderson, D.M. 1986. Green light mediated pho-tomorphogenesis in a dinoflagellate resting cyst. — Nature322:659–661.

    Google Scholar 

  • Blanco, J. 1995. Cyst production in four species of neritic dino-flagellates. — Journal of Plankton Research17: 165–182.

    Google Scholar 

  • Boessenkool, K.P.;Brinkhuis, H.;Schonfeld, J. &Targarona, J. 2001. North Atlantic sea-surface temperature changes and the climate of western Iberia during the last deglaciation; a marine palynological approach. — Global and Planetary Change30: 33–39.

    Google Scholar 

  • Bold, H.C. 1973. Morphology of Plants. — 668 S., New York (Harper).

    Google Scholar 

  • Boyd, P.W.;Watson, A.J.;Law, C.L.;Abraham, E.R.;Trull, T.;Murdoch, R.;Bakker, D.C.E.;Bowie, A.R.;Buesseler, K.O.;Chang, H.;Charette, M.;Croot, P.;Downing, K.;Frew, R.;Gall, M.;Hadfield, M.;Hall, J.;Harvey, M.;Jameson, G.;LaRoche, J.;Liddicoat, M.;Ling, R.;Maldonado, M.;McKay, R.M.;Nodder, S.;Pickmere, S.;Pridmore, R.;Rintoul, S.;Safi, K.;Sutton, P.;Strzepek, R.;Tanneberger, K.;Turner, S.;Waite, A. &Zeldis, J. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. — Nature407: 695–702.

    Google Scholar 

  • Bradford, M.A. &Wall, D.A. 1984. The distribution of Recent organic-walled dinoflagellate cysts in the Prsian Gulf, Gulf of Oman, and northwestern Arabian Sea. — Palaeontographica (B)192: 16–84.

    Google Scholar 

  • Brand, L.E.;Sunde, W.G. &Guillard, R.R.L. 1983. Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. — Limnology and Oceanography28: 1182–1198.

    Google Scholar 

  • Brasier, M.D. 1985. Fossil indicators of nutrient levels, 1. Eutrophication and climate change. — In:Bosence, D.W. &Allison, P.A., Hrsg., Marine palaeoenvironmental analysis from fossils. — Geological Society Special Publication83: 113–132.

    Google Scholar 

  • Brenner, W. 1998. Grundlagen und Anwendungsmöglichkeiten der Mikro-Absorptionsphotometrie fur organischwandige Mikrofossilien. — Geomar Report76: 1–141.

    Google Scholar 

  • Brenner, W. 2001. Organic-walled microfossils from the central Baltic Sea, indicators of environmental change and base for ecostratigraphic correlation. — Baltica14: 40–51.

    Google Scholar 

  • Brenner, W.W. &Biebow, N. 2001. Missing autofluorescence of recent and fossil dinoflagellate cysts — an indicator of hetero-trophy? — In:Luterbacher, H.;Pross, J. &Wille, W., Hrsg., Studies in dinoflagellate cysts in honour of Hans Gocht. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen219: 229–240.

    Google Scholar 

  • Brinkhuis, H. 1994. Late Eocene to Oligocene dinoflagellate cysts from the Priabonian type-area (northeast Italy): Biostratigraphy and paleoenvironmental interpretation. — Palaeogeography, Palaeoclimatology, Palaeoecology107: 121–163.

    Google Scholar 

  • Brinkhuis, H. &Biffi, U. 1993. Dinoflagellate cyst stratigraphy of the Eocene/Oligocene transition in central Italy. — Marine Micropaleontology22: 131–183.

    Google Scholar 

  • Brinkhuis, H.;Bujak, J.P.;Smit, J.;Versteegh, G.J.M. &Visscher, H. 1998. Dinoflagellate-based sea surface temperature reconstructions across the Cretaceous-Tertiary boundary. — Palaeogeography, Palaeoclimatology, Palaeoecology141: 67–83.

    Google Scholar 

  • Brinkhuis, H.;Powell, A.J. &Zevenboom, D. 1992. High-resolution dinoflagellate cyst biostratigraphy of the Oligocene/Miocene transition interval in Northwest and Central Italy. — In:Head, M.J. &Wrenn, J.H., Hrsg., Neogene and Quaternary dinoflagellate cysts and acritarchs: 219–258, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Buckley, D.E. &Cranston, R.E. 1988. Early diagenesis in deep sea turbidites: The impact of paleo-oxidation zones? — Geochimica et Cosmochimica Acta52: 2925–2939.

    Google Scholar 

  • Bujak, J.P. 1984. Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and the northern North Pacific. — Micro-paleontology30: 180–212.

    Google Scholar 

  • Bujak, J.P. &Brinkhuis, H. 1998. Global warming and dinocyst changes across the Paleocene/Eocene epoch boundary. — In:Aubry, M.-P.;Lucas, S. &Berggren, W.A., Hrsg., Late Paleocene-Early Eocene climatic and biotic events in the marine and terrestrial records: 277–294, New York (Columbia University Press).

    Google Scholar 

  • Bujak, J.P. &Williams, G.L. 1979. Dinoflagellate diversity through time. — Marine Micropaleontology4: 1–12.

    Google Scholar 

  • Buzas, M.A. &Gibson, T.G. 1969. Species diversity: Benthonic foraminifera in western North Atlantic. — Science163:72–75.

    Google Scholar 

  • Coccioni, R.;Basso, D.;Brinkhuis, H.;Galeotti, S.;Gardin, S.;Monechi, S. &Spezzaferri, S. 2001. Marine biotic signals across a late Eocene impact layer at Massignano, Italy: Evidence for long-term environmental perturbations? — Terra Nova12: 258–263.

    Google Scholar 

  • Crouch, E.M. 2001. Environmental change at the time of the Paleocene-Eocene biotic turnover. — University of Utrecht Laboratory of Palaeobotany and Palynology Contributions Series14: 1–216.

    Google Scholar 

  • Crouch, E.M.;Heilmann-Clausen, C.;Brinkhuis, H.;Morgans, H.E.G.;Rogers, K.M.;Egger, H. &Schmitz, B. 2001. Global dinoflagellate event associated with the late Paleocene thermal maximum. — Geology29: 315–318.

    Google Scholar 

  • Dale, B. 1976. Cyst formation, sedimentation, and preservation: Factors affecting dinoflagellate assemblages in Recent sediments from Trondheimsfjord, Norway. — Review of Palaeobotany and Palynology22: 39–60.

    Google Scholar 

  • Dale, B. 1983. Dinoflagellate resting cysts: „Benthic plankton”.- In:Fryxell, G.A., Hrsg., Survival Strategies of the Algae: 69–136, Cambridge (Cambridge University Press).

    Google Scholar 

  • Dale, B. 1996. Dinoflagellate cyst ecology: Modeling and geological applications. — In:Jansonius, J. &McGregor, D.C., Hrsg., Palynology: Principles and applications: 1249–1276, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Dale, B. 2000. Dinoflagellate cysts as indicators of cultural eutrophication and industrial pollution in coastal sediments. — In:Martin, R.E., Hrsg., Environmental micropaleontology: 305–321, Dordrecht (Kluwer Academic/Plenum Publishers).

    Google Scholar 

  • Dale, B. &Dale, A.L. 1992. Dinoflagellate contributions to the deep sea. — Ocean Biocoenosis Series5: 1–77.

    Google Scholar 

  • Dale, B. &Fjellså, A. 1994. Dinoflagellate cysts as paleoproductivity indicators: State of the art, potential and limits. — In:Zahn, R.;Pedersen, T.F.;Kaminski, M.A. &Labeyrie, L., Hrsg., Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change: 521–537, Berlin (Springer).

    Google Scholar 

  • Dale, B.;Thorsen, T.A. &Fjellså, A. 1999. Dinoflagellate cysts as indicators of cultural eutrophication in the Oslofjord, Norway. — Estuarine, Coastal and Shelf Science48: 371–382.

    Google Scholar 

  • Davey, R.J. 1971. Palynology and palaeo-environmental studies with special reference to the continental shelf sediments of South Africa. — In:Farinacci, A. &Matteucci, R., Hrsg., Proceedings of the Second Planktonic Conference, Roma, 1970: 331–347.

  • Davey, R.J. &Rogers, J. 1975. Palynomorph distribution in recent offshore sediments along two traverses off South West Africa. — Marine Geology18: 213–225.

    Google Scholar 

  • Devillers, R. &de Vernal, A. 2000. Distribution of dinoflagellate cysts in surface sediments of the northern North Atlantic in relation to nutrient content and productivity in surface waters. — Marine Geology166: 103–124.

    Google Scholar 

  • Dodge, J.D. &Harland, R. 1991. The distribution of planktonic dinoflagellates and their cysts in the eastern and northeastern Atlantic Ocean. — New Phytologist118: 593–603.

    Google Scholar 

  • Dodsworth, P. 1995. A note of caution concerning the application of quantitative palynological data from oxidized preparations. — Journal of Micropaleontology14: 6.

    Google Scholar 

  • Edwards, L.E. &Andrle, V.A.S. 1992. Distribution of selected dinoflagellate cysts in odern marine sediments. — In:Head, M.J. &Wrenn, J.H., Hrsg., Neogene and Quaternary dinoflagellate cysts and acritarchs: 259–288, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Ellegaard, M. 2000. Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years. — Review of Palaeobotany and Palynology109:65–81.

    Google Scholar 

  • Emerson, S. &Hedges, J.I. 1988. Processes controlling the ocean carbon content of open ocean sediments. — Paleoceanography 3: 621–634.

    Google Scholar 

  • Eshet, Y.;Almogi-Labin, A. &Bein, A. 1994. Dinoflagellate cysts, paleoproductivity and upwelling systems: A Late Cretaceous example from Israel. — Marine Micropaleontology23:231–240.

    Google Scholar 

  • Feist-Burkhardt, S. &Pittet, B. 1996. Dinoflagellate cyst distribution patterns in Upper Oxfordian shallow marine carbonates and marls from the Swiss Jura Mountains. — Abstracts of the 9 International Palynological Congress: 42, Houston.

  • Fensome, R.A.;MacRae, R.A.;Moldowan, J.M.;Taylor, F.J.R. &Williams, G.L. 1996a. The early Mesozoic radiation of dinoflagellates. — Paleobiology22: 329–338.

    Google Scholar 

  • Fensome, R.A.;Taylor, F.J.R.;Norris, G.;Sarjeant, W.A.S.;Wharton, D.I. &Williams, G.L. 1993. A classification of living and fossil dinoflagellates. — Micropaleontology (Special Publication)7: 1–351.

    Google Scholar 

  • Firth, J. V. 1996. Upper middle Eocene to Oligocene dinoflagellate biostratigraphy and assemblage variations in Hole 913B, Greenland Sea. — In:Thiede, J.;Myrhe, A.M.;Firth, J.V.;Johnson, G.L. &Ruddiman, W.F., Hrsg., Proceedings of the Ocean Drilling Program, Scientific Results151: 203–242.

    Google Scholar 

  • Firth, J.V. &Clark, D.L. 1998. An early Maastrichtian organic-walled phytoplankton cyst assemblage from an organic-rich black mud in Core FI-533, Alpha Ridge: Evidence for up-welling conditions in the Cretaceous Arctic Ocean. — Marine Micropaleontology34: 1–27.

    Google Scholar 

  • Fütterer, D. 1978. Distribution of calcareous dinoflagellates in Cenozoic sediments of Site 366, eastern North Atlantic. — In:Lancelot, Y.;Seibold, E. et al., Hrsg., Initial Reports of the Deep Sea Drilling Project41: 709–737.

    Google Scholar 

  • Gaines, G. &Taylor, F.J.R. 1984. Extracellular digestion in marine dinoflagellates. — Journal of Plankton Research6: 1057–1061.

    Google Scholar 

  • Godhe, A.;Noren, F.;Kulenstierna, M.;Ekberg, C. &Karlson, B. 2001. Relationship between planktonic dinoflagellate abundance, cysts recovered in sediment traps and environmental factors in the Gullmar Fjord, Sweden. — Journal of Plankton Research23: 923–938.

    Google Scholar 

  • Goodman, D.K. 1987. Dinoflagellate cysts in ancient and modern sediments. — In:Taylor, F.J.R., Hrsg., The biology of dinoflagellates. — Botanical Monographs21: 649–722.

    Google Scholar 

  • Gradstein, F.M.;Kristiansen, I.L.;Loemo, L. &Kaminski, M.A. 1992. Cenozoic foraminiferal and dinoflagellate cyst biostratigraphy of the central North Sea. — Micropaleontology38: 101–137.

    Google Scholar 

  • Grøsfjeld, K.;Larsen, E.;Sejrup, H.P.;de Vernal, A.;Flatebø, T.;Vestbø, M.;Haflidason, H. &Aarseth, I. 1999. Dinoflagellate cysts reflecting surface-water conditions in Voldafjorden, western Norway during the last 11.300 years. — Boreas28: 403–415.

    Google Scholar 

  • Guiot, J. 1990. Methodology of the last climatic cycle reconstruction in France from pollen data. — Palaeogeography, Palaeoclimatology, Palaeoecology80: 49–69.

    Google Scholar 

  • Habib, D. &Miller, J.A. 1989. Dinoflagellate species and organic facies evidence of marine transgression and regression in the Atlantic coastal plain. — Palaeogeography, Palaeoclimatology, Palaeoecology74: 23–47.

    Google Scholar 

  • Habib, D.;Moshkovitz, S. &Kramer, C. 1992. Dinoflagellate and calcareous nannofossil response to sea-level change in Cretaceous-Tertiary boundary sections. — Geology20: 165–168.

    Google Scholar 

  • Hallegraeff, G.M. 1993. A review of harmful algal blooms and their apparent global increase. — Phycologia32: 79–99.

    Google Scholar 

  • Haq, B.U.;Hardenbol, J. &Vail, P.R. 1987. Chronology of fluctuating sea levels since the Triassic. — Science235: 1156–1167.

    Google Scholar 

  • Haq, B.U.;Hardenbol, J.;Vail, P.R. et al. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. — In:Wilgus, C.K.;Hastings, B.S. et al., Hrsg., Sea level changes: An integrated approach. — Society of Economic Paleontologists and Mineralogists Special Publication42: 71–108.

    Google Scholar 

  • Harland, R. &Pudsey, C.J. 1999. Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica. — Marine Micropaleontology37: 77–99.

    Google Scholar 

  • Head, M.J. 1996. Modern dinoflagellate cysts and their biological affinities. — In:Jansonius, J. &McGregor, D.C., Hrsg., Palynology: Principles and applications: 1197–1248, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Heckel, P.H. 1974. Carbonate buildup in the geologic record: a review. — In:Laporte, L.F., Hrsg., Reefs in time and space. — Society of Economic Paleontologists and Mineralogists Special Publication18: 90–154.

    Google Scholar 

  • Hochuli, P.A. &Frank, S.M. 2000. Palynology (dinoflagellate cysts, spores, and pollen) and stratigraphy of the Lower Carnian Raibl Group. — Eclogae Geologicae Helvetiae93: 429–443.

    Google Scholar 

  • Horner, R.A. 1985. Sea ice biota. — 215 S., Boca Raton (CRC Press).

    Google Scholar 

  • Huber, G. &Nipkow, F. 1922. Experimentelle Untersuchungen über die Entwicklung vonCeratium hirundinella O.F.M. — Zeitschrift für Botanik14: 337–371.

    Google Scholar 

  • Huber, G. &Nipkow, F. 1923. Experimentelle Untersuchungen über die Entwicklung und Formbildung vonCeratium hirundinella O.F.M. — Flora116: 114–215.

    Google Scholar 

  • Iakovleva, A.I.;Brinkhuis, H. &Cavagnetto, C. 2001. Late Palaeocene-Early Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways. — Palaeogeography, Palaeoclimatology, Palaeoecology172: 243–268.

    Google Scholar 

  • Ishikawa, A. &Taniguchi, A. 1996. Contribution of benthic cysts to the population dynamics ofScrippsiella spp. (Dinophyceae) in Onagawa Bay, northeast Japan. — Marine Ecology Program Series140: 169–178.

    Google Scholar 

  • Jacobson, D.M. &Anderson, D.M. 1986. Thecate heterotrophic dinoflagellates: Feeding behaviour and mechanisms. — Journal of Phycology22: 249–258.

    Google Scholar 

  • Jacobson, D.M. &Anderson, D.M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. — Journal of Phycology32: 279–285.

    Google Scholar 

  • Jarvis, I.;Carson, G.A.;Cooper, M.K.E.;Hart, M.B.;Leary, P.N.;Tocher, B.A.;Horne, D. &Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event (OAE). — Cretaceous Research9: 3–103.

    Google Scholar 

  • Keafer, B.A.;Buesseler, K.O. &Anderson, D.M. 1992. Burial of living dinoflagellate cysts in estuarine and nearshore sediments. — Marine Micropaleontology20: 147–161.

    Google Scholar 

  • Keupp, H. 1991. Fossil calcareous dinoflagellate cysts. — In:Riding, R., Hrsg., Calcareous algae and stromatolites: 267–286, Berlin (Springer).

    Google Scholar 

  • Kokinos, J.P. &Anderson, D.M. 1995. Morphological development of resting cysts in cultures of the marine dinoflagellateLingulodinium polyedrum (=L. machaerophorum). — Palynology19: 143–166.

    Google Scholar 

  • Köthe, A. 1990. Paleogene dinoflagellates from northwest Germany. — Geologisches Jahrbuch118: 1–111.

    Google Scholar 

  • Kouli, K.;Brinkhuis, H. &Dale, B. 2001.Spiniferites cruci-formis: a fresh water dinoflagellate cyst? — Review of Paleobotany and Palynology113: 273–286.

    Google Scholar 

  • Kremp, A. &Anderson, D.M. 2000. Factors regulating germination of resting cysts of the spring bloom dinoflagellateScrippsiella hangoei from the northern Baltic Sea. — Journal of Plankton Research22: 1311–1327.

    Google Scholar 

  • Kremp, A. &Heiskanen, A.-S. 1999. Sexuality and cyst formation of the spring-bloom dinoflagellateScrippsiella hangoei in the coastal northern Baltic Sea. — Marine Biology134: 771–777.

    Google Scholar 

  • Krutzsch, W. 1962. Die Mikroflora der Geiseltalbraunkohle, 3. Süßwasserdinoflagellaten aus subaquatisch gebildeten Blätterkohlenlagen des mittleren Geiseltales. — Hallesches Jahrbuch für Mitteldeutsche Erdgeschichte4: 40–45.

    Google Scholar 

  • Le Hérissé, A.;Masure, E.;Al Ruwaili, M. &Massa, D. 2000. Revision ofArpylorus antiquus from the Silurian: The end of a myth. — Abstracts 10th International Palynological Congress: 88, Nanjing.

  • Leckie, D.A.;Singh, C;Bloch, J.;Wilson, M. &Wall, J. 1992. An anoxic event at the Albian-Cenomanian boundary: the Fish Scale Marker Bed, northern Alberta, Canada. — Palaeogeography, Palaeoclimatology, Palaeoecology92: 139–166.

    Google Scholar 

  • Lejeune-Carpentier, M. &Sarjeant, W.A.S. 1981. Restudy of some larger dinoflagellate cysts and an acritarch from the Upper Cretaceous of Belgium and Germany. — Annales de la Societé Géologique de Belgique104: 1–39.

    Google Scholar 

  • Lessard, E.J. &Swift, E. 1985. Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. — Marine Biology87: 289–296.

    Google Scholar 

  • Lewis, J. &Hallet, R. 1997.Lingulodinium polyedrum (Gonyaulaxpolyedra), a blooming dinoflagellate. — Oceanography and Marine Biology Annual Review35: 97–161.

    Google Scholar 

  • Lewis, J.;Harris, A.S.D.;Jones, K.J. &Edmonds, R.L. 1999. Longterm survival of marine planktonic diatoms and dinoflagellates in stored sediment samples. — Journal of Plankton Research21: 343–354.

    Google Scholar 

  • Lewis, J.;Rochon, A. &Harding, I. 1999. Preliminary observations of cyst-theca relationships inSpiniferites ramosus andSpiniferites membranaceus (Dinophyceae). — Grana38: 113–124.

    Google Scholar 

  • Lewitus, A.J.;Glasgow, H.B.J. &Burkholder, J.-A.M. 1999. Kleptoplastidy in the toxic dinoflagellatePfiesteria piscicida (Dinophyceae). — Journal of Phycology35: 303–312.

    Google Scholar 

  • MacRae, R.A.;Fensome, R.A. &Williams, G.L. 1996. Fossil dinoflagellate diversity, originations, and extinctions and their significance. — Canadian Journal of Botany74: 1687–1694.

    Google Scholar 

  • Manum, S.B. &Throndsen, T. 1986. Age of Tertiary formations on Spitsbergen. — Polar Research 4: 103–131.

    Google Scholar 

  • Marasovic, I. 1989. Encystment and excystment ofGonyaulax polyedra during a red tide. — Estuarine, Coastal and Shelf Sciences28: 35–41.

    Google Scholar 

  • Marasovic, I.;Gacic, M.;Kovacevic, V.;Krstulovic, N.;Kuspilic, G.;Pucher-Petkovic, T.;Odzak, N. &Solic, M. 1991. Development of a red tide in the Kastela Bay (Adriatic Sea). — Marine Chemistry32: 375–385.

    Google Scholar 

  • Marret, F. 1994. Distribution of dinoflagellate cysts in recent marine sediments from the east Equatorial Atlantic (Gulf of Guinea). — Review of Palaeobotany and Palynology84: 1–22.

    Google Scholar 

  • Marret, F. &Zonneveld, K.A.F. 2003. Atlas of modern organic-walled dinoflagellate cyst distribution. — Review of Palaeobotany and Palynology2507: 167–200.

    Google Scholar 

  • Marshall, K.L. &Batten, D.J. 1988. Dinoflagellate cyst associations in Cenomanian-Turonian „black shale” sequences of northern Europe. — Review of Palaeobotany and Palynology54: 85–103.

    Google Scholar 

  • Matsuoka, K. 1992. Species diversity of modern dinoflagellate cysts in surface sediments around the Japanese Islands. — In:Head, M.J. &Wrenn, J.H., Hrsg., Neogene and Quaternary dinoflagellate cysts and acritarchs: 33–53, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Matsuoka, K. 1999. Eutrophication process recorded in dinoflagellate cyst assemblages: A case of Yokohama Port, Tokyo Bay, Japan. — Science of the Total Environment231: 17–35.

    Google Scholar 

  • Matthiessen, J. 1994. Verbreitung von marinen Palynomorphen-Vergesellschaftungen in rezenten Sedimenten des europäischen Nordmeeres. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen194: 1–24.

    Google Scholar 

  • Matthiessen, J. 1996. Dinoflagellate cyst evidence of Holocene environmental conitions off Greenland. — Zentralblatt für Geologie und Paläontologie1995: 271–286.

    Google Scholar 

  • Matthiessen, J. &Brenner, W. 1996. Chlorococcalalgen und Dinoflagellatenzysten in rezenten Sedimenten des Greifswalder Boddens (südliche Ostsee). — Senckenbergiana Maritima27: 33–48.

    Google Scholar 

  • Moldowan, J.M. &Talyzina, N.M. 1998. Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. — Science281: 1168–1170.

    Google Scholar 

  • Monteil, E. 1991. Morphology and systematics of the ceratioid group: A new morphographic approach. Revision and emendation of the genusMuderongia Cookson & Eisenack 1958. — Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine15: 461–505.

    Google Scholar 

  • Monteil, E. 1993. Dinoflagellate cyst biozonation of the Tithonien and Berriasian of South-East France. Correlation with the sequence stratigraphy. — Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine17: 249–273.

    Google Scholar 

  • Montresor, M.;Zingone, A. &Sarno, D. 1998. Dinoflagellate cyst production at a coastal Mediterranean site. — Journal of Plankton Research20: 2291–2312.

    Google Scholar 

  • Moshkovitz, S. &Habib, D. 1993. Calcareous nannofossil and dinoflagellate stratigraphy of the Cretaceous-Tertiary boundary, Alabama, and Georgia. — Micropaleontology39: 167–191.

    Google Scholar 

  • Mudie, P.J. 1992. Circum-Arctic Quaternary and Neogene marine palynofloras: Paleoecology and statistical analysis. — In:Head, M.J. &Wrenn, J.H., Hrsg., Neogene and Quaternary dinoflagellate cysts and acritarchs: 347–390, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Mudie, P.J. 1996. Pellets of dinoflagellate-eating zooplankton. — In:Jansonius, J. &McGregor, D.C., Hrsg., Palynology: Principles and applications: 1087–1089, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Mudie, P.j.;Aksu, A.E. &Yasar, D. 2001. Late Quaternary dinoflagellate cysts from the Black, Marmara and Aegean Seas: variations in assemblages, morphology and paleosalinity. — Marine Micropaleontology43: 155–178.

    Google Scholar 

  • Mudie, P.J. &Harland, R. 1996. Aquatic Quaternary. — In:Jansonius, J. &McGregor, D.C., Hrsg., Palynology: Principles and applications: 843–877, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Mudie, P.J.;Rochon, A. &Levac, E. 2002. Palynological records of red tide-producing species in Canada: past trends and implications for the future. — Palaeogeography, Palaeoclimatology, Palaeoecology180: 159–186.

    Google Scholar 

  • Nehring, S. 1994a. Dinoflagellaten-Dauercysten in deutschen Küstengewässern: Vorkommen, Verbreitung und Bedeutung als Rekrutierungspotential. — Berichte des Instituts ftir Meereskunde der Christian-Albrechts-Universität Kiel259: 1–231.

    Google Scholar 

  • Nehring, S. 1994b. Spatial distribution of dinoflagellate resting cysts in Recent sediments of Kiel Bight, Germany (Baltic Sea). — Ophelia39: 137–158.

    Google Scholar 

  • Nicoll, R.S. &Foster, C.B. 1994. Late Triassic conodont and palynomorph biostratigraphy and conodont thermal maturation, North West Shelf, Australia. — Journal of Australian Geology and Geophysics15: 1–101.

    Google Scholar 

  • Nohr-Hansen, H. im Druck. Dinoflagellate cyst stratigraphy of the Palaeogene strata from the Hellefisk-1, Dcermiut-1, Kan-gamiut-1, Nukik-1, Nukik-2 and Qulleq-1 wells, offshore West Greenland. — Marine and Petroleum Geology.

  • Norris, R.D. &Röhl, U. 1999. Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition. — Nature401: 775–778.

    Google Scholar 

  • Nuzzo, L. &Montresor, M. 1999. Different excystment patterns in two calcareous cyst-producing species of the dinoflagellate genusScrippsiella. — Journal of Plankton Research21: 2009–2018.

    Google Scholar 

  • Olli, K. &Anderson, D.M. 2002. High encystment success of the dinoflagellateScrippsiella cf.lachrymosa in culture experiments. — Journal of Phycology38: 145–156.

    Google Scholar 

  • Orr, W.N. &Conley, S. 1976. Siliceous dinofiagellates in the northeast Pacific rim. — Micropaleontology22: 92–99.

    Google Scholar 

  • Patten, B.C. 1962. Species diversity in net phytoplankton of Raritan Bay. — Journal of Marine Research20: 57–75.

    Google Scholar 

  • Persson, A. 2001. On the ecology of cyst-producing dinofiagellates on the Swedish west coast. — PhD. thesis, Department of Marine Botany, Göteborg University. — 115 S.

  • Peters, F.J.C.;Hoek, R.P.;Brinkhuis, H.;Wilpshaar, M.;de Boer, P.L.;Krijgsman, W. &Meulenkamp, J.E. 1998. Differentiating glacio-eustasy and tectonics; a case study involving dinoflagellate cysts from the Eocene-Oligocene of the Pindos Foreland Basin (NW Greece). — Terra Nova10: 245–249.

    Google Scholar 

  • Peyron, O. &de Vernal, A. 2001. Application of artificial neural networks (ANN) to high-latitude dinocyst assemblages for the reconstruction of past sea-surface conditions in Arctic and sub-Arctic seas. — Journal of Quaternary Science16:699–709.

    Google Scholar 

  • Pfiester, L.A. &Anderson, D.M. 1987. Dinoflagellate reproduction. — In:Taylor, F.J.R., Hrsg., The biology of dinofiagellates. — Botanical Monographs21: 611–648.

    Google Scholar 

  • Powell, A.J. 1992 (Hrsg.). A stratigraphic index of dinoflagellate cysts. — 229 S., London (Chapman & Hall).

    Google Scholar 

  • Powell, A.J.;Brinkhuis, H. &Bujak, J.P. 1996. Upper Paleocene — Lower Eocene dinoflagellate cyst sequence biostratigraphy of southeast England. — In:Knox, R.W.O’B.;Corfield, R.M. &Dunay, R.S., Hrsg., Correlation of the Early Paleogene in northwest Europe. — Geological Society Special Publication101: 145–183.

    Google Scholar 

  • Powell, A.J.;Lewis, J. &Dodge, J.D. 1992. The palynological expressions of post-Paleogene upwelling: a review. — In:Summerhayes, C.P.;Prell, W.L. &Emeis, K.C., Hrsg., Upwelling systems: Evolution since the Early Miocene: 215–226, London (The Geological Society).

    Google Scholar 

  • Pross, J. 2001a. Dinoflagellate cyst biogeography and biostratigraphy as a tool for palaeoceanographic reconstructions: An example from the Oligocene of western and northwestern Europe. — In:Luterbacher, H.;Pross, J. &Wille, W., Hrsg., Studies in dinoflagellate cysts in honour of Hans Gocht. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen219: 207–219.

    Google Scholar 

  • Pross, J. 2001b. Paleo-oxygenation in Tertiary epeiric seas: Evidence from dinoflagellate cysts. — Palaeogeography, Palaeoclimatology, Palaeoecology166: 369–381.

    Google Scholar 

  • Pross, J. &Schmiedl, G. 2002. Early Oligocene dinoflagellate cysts from the Upper Rhine Graben (SW Germany): Paleoen-vironmental and paleoclimatic implications. — Marine Micro-paleontology45: 1–24.

    Google Scholar 

  • Rochon, A.;de Vernal, A.;Sejrup, H.-P. &Haflidason, H. 1998. Palynological evidence of climatic and oceanographic changes in the North Sea during the last deglaciation. — Quaternary Research49: 197–207.

    Google Scholar 

  • Ryther, J.H. &Dunstan, W.M. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. — Science171: 1008–1013.

    Google Scholar 

  • Saetre, M.L.L.;Dale, B.;Abdullah, M.I. &Saetre, G.-P. 1997. Dinoflagellate cysts as possible indicators of industrial pollution in a Norwegian fjord. — Marine Environmental Research44: 167–189.

    Google Scholar 

  • Santarelli, A. 1997. Dinoflagellate cysts and astronomical forcing in the Mediterranean Upper Miocene. — University of Utrecht Laboratory of Palaeobotany and Palynology Contributions Series6: 1–141.

    Google Scholar 

  • Sarjeant, W.A.S. 1978.Arpylorus antiquus Calandra emend., a dinoflagellate cyst from the Upper Silurian. — Palynology2: 167–179.

    Google Scholar 

  • Schioler, P.;Brinkhuis, H.;Roncaglia, L. &Wilson, G.J. 1997. Dinoflagellate biostratigraphy and sequence stratigraphy of the type Maastrichtian (Upper Cretaceous), ENCI Quarry, The Netherlands. — Marine Micropaleontology31: 65–95.

    Google Scholar 

  • Schnepf, E. &Elbrächter, M. 1992. Nutritional strategies in dinofiagellates; a review with emphasis on biological aspects. — European Journal of Protistology28: 3–24.

    Google Scholar 

  • Schrank, E. 1988. Effects of chemical processing on the preservation of peridinoid dinofiagellates; a case from the Late Cretaceous of NE Africa. — Review of Palaeobotany and Palynology56: 123–140.

    Google Scholar 

  • Schulz, K.;Zondervan, I.;Riebesell, U.;Timmermans, K.;Veldhuis, M. &Gerringa, L. 2002. Influence of zinc limitation on organic production and calcification inEmiliani huxleyi (Coccolithophorids). — Abstracts of the Conference on Coccolithophores — From Molecular Processes to Global Impact: 37, Ascona.

  • Shimmield, G.B. 1992. Can sediment geochemistry record changes in coastal upwelling palaeoproductivity? Evidence from northwest Africa and the Arabian Sea. — In:Summerhayes, C.P.;Prell, W.L. &Emeis, K.C., Hrsg., Upwelling Systems: Evolution since the Early Miocene. — Geological Society Special Publication64: 29–46.

    Google Scholar 

  • Steffen, D. &Gorin, G. 1993. Palynofacies of the Upper Tifhonian — Berriasian deep-sea carbonates in the Vocontian Trough (SE France). — Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine17: 235–247.

    Google Scholar 

  • Stover, L.E.;Brinkhuis, H.;Damassa, S.P.;de Verteuil, L.;Helby, R.J.;Monteil, E.;Partridge, A.;Powell, A.J.;Riding, J.B.;Smelror, M. &Williams, G.L. 1996. Mesozoic-Tertiary dinofiagellates, acritarchs and prasinophytes. — In:Jansonius, J. &McGregor, D.C., Hrsg., Palynology: Principles and applications: 641–750, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Stover, L.E. &Hardenbol, J. 1994. Dinofiagellates and depositional sequences in the Lower Oligocene (Rupelian) Boom Clay Formation, Belgium. — Bulletin de la Société Beige de Géologie102: 5–77.

    Google Scholar 

  • Suess, E. 1980. Particulate organic carbon flux in the oceans — surface productivity and oxygen utilization. — Nature288: 260–263.

    Google Scholar 

  • Tappan, H. 1980. The Paleobiology of Plant Protists. — 1028 S., San Francisco (Freeman).

    Google Scholar 

  • Targarona, J.;Warnaar, J.;Boessenkool, K.P.;Brinkhuis, H. &Canals, M. 1999. Recent dinoflagellate cyst distribution in the North Canary Basin, NW Africa. — Grana38: 170–178.

    Google Scholar 

  • Taylor, F.J.R. 1980. On dinoflagellate evolution. — BioSystems13: 65–108.

    Google Scholar 

  • Taylor, F.J.R. 1987a. General group characteristics; special features of interest; short history of dinoflagellate study. — In:Taylor, F.J.R., Hrsg., The biology of dinoflagellates. — Botanical Monographs21: 1–23.

    Google Scholar 

  • Taylor, F.J.R. 1987b. General and marine ecosystems in Taylor, F.J.R. & Pollingher, U., Chapter 11: Ecology of dinoflagellates. — In:Taylor, F.J.R., Hrsg., The biology of dinoflagellates. — Botanical Monographs21: 399–501.

    Google Scholar 

  • Taylor, F.J.R. 1993. Current problems with harmful phytoplankton blooms in British Columbia waters. — In:Smayda, T.J. &Shimizu, Y., Hrsg., Toxic phytoplankton blooms in the sea: 699–703, Amsterdam (Elsevier).

    Google Scholar 

  • Taylor, D.L. &Seliger, H.H., 1979. Toxic dinoflagellate blooms. — 505 S., North Holland (Elsevier).

    Google Scholar 

  • Thorsen, T.A. &Dale, B. 1997. Dinoflagellate cysts as indicators of pollution and past climate in a Norwegian fjord. — The Holocene7: 433–446.

    Google Scholar 

  • Trench, R. 1987. Non-parasitic symbioses. — In:Taylor, F.J.R., Hrsg., The biology of dinoflagellates. — Botanical Monographs21: 530–570.

    Google Scholar 

  • Turon, J.-L. 1984. Le palynoplancton dans l’environnement actuel de l’Atlantique nord-oriental. Evolution climatique et hy-drologique depuis le dernier maximum glaciaire. — Memoire Institut Geologie du Bassin Aquitaine17: 1–313.

    Google Scholar 

  • Tyrrel, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. — Nature400: 525–531.

    Google Scholar 

  • de Vernal, A.;Goyette, C. &Rodrigues, C.G. 1989. Contribution palynostratigraphique (dinokystes, pollen et spores) a la connaissance de la mer de Champlain: coupe de Saint Ceza-ire, Quebec. — Canadian Journal of Earth Sciences26: 2450–2464.

    Google Scholar 

  • de Vernal, A.;Hillaire-Marcel, C.;Turon, J.-L. &Matthiessen, J. 2000. Reconstruction of sea-surface temperature, salinity, and sea-ice cover in the northern North Atlantic during the last glacial maximum based on dinocyst assemblages. — Canadian Journal of Earth Sciences37: 725–750.

    Google Scholar 

  • de Vernal, A. &Mudie, P.J. 1992. Pliocene and Quaternary dinoflagellate cyst stratigraphy in the Labrador Sea: Paleoenvironmental implications. — In:Head, M.J. &Wrenn, J.H., Hrsg., Neogene and Quaternary dinoflagellate cysts and acritarchs: 329–436, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • de Vernal, A.;Rochon, A.;Turon, J-L. &Matthiessen, J. 1998. Organic-walled dinoflagellate cysts: Palynological tracers of sa-surface conditions in middle to high latitude marine environments. — Geobios30: 905–920.

    Google Scholar 

  • de Vernal, A.;Turon, J.-L. &Guiot, J. 1993. Dinoflagellate cyst distribution in high-latitude marine environments and quantitative reconstruction of sea-surface salinity, temperature, and seasonality. — Canadian Journal of Earth Sciences31:48–62.

    Google Scholar 

  • de Vernal, A.;Turon, L. &Guiot, J. 1994. Dinoflagellate distribution in high-lattitude marine environments and quantitative reconstruction of sea-surface salinity, temperature and seasonality. — Canadian Journal of Earth Sciences31: 48–62.

    Google Scholar 

  • de Vernal, A.;Matthiessen, J.;Mudie, P.J.;Rochon, A.;Boessenkool, K.P.;Eynaud, F.;Grøsfjeld, K.;Guiot, J.;Hamel, D.;Harland, R.;Head, M.J.;Kunz-Pirrung, M.;Loucheur, V.;Peyron, O.;Pospelova, V.;Radi, T.;Turon, J.-L. &Voronina, E. 2001. Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the new „n-677” data base and its application for quantitative paleoceanographic reconstruction. — Journal of Quaternary Science16: 681–698.

    Google Scholar 

  • Versteegh, G.J.M. 1994. Recognition of cyclic and non-cyclic environmental changes in the Mediterranean Pliocene: A palynological approach. — Marine Micropaleontology23: 147–183.

    Google Scholar 

  • Versteegh, G.J.M.;Brinkhuis, H.;Visscher, H. &Zonneveld, K.A.F. 1996. The relation between productivity and temperature in the Pliocene North Atlantic at the onset of northern hemisphere glaciation: a palynological study. — Global and Planetary Change11: 155–165.

    Google Scholar 

  • Versteegh, G.J.M. &Zonneveld, K.A.F. 1994. Determination of (palaeo-)ecological preferences of dinoflagellates by applying Detrended and Canonical Correspondence analysis to Late Pliocene dinoflagellate cyst assemblages of the south Italian Singha secion. — Review of Palaeobotany and Palynology84: 181–199.

    Google Scholar 

  • Versteegh, G.J.M. &Zonneveld, K.A.F. 2002. Use of selective degradation to separate preservation from productivity. — Geology30: 615–618.

    Google Scholar 

  • de Verteuil, L. &Norris, G. 1996. Middle to upper MioceneGeonettia clineae, an opportunistic coastal embayment dinoflagellate of theHomotryblium complex. — Micropaleontology42: 263–284.

    Google Scholar 

  • Vink, A. im Druck. Calcareous dinoflagellate cysts in South and equatorial Atlantic surface sediments: diversity, distribution, ecology and potential for palaeoenvironmental reconstruction. — Marine Micropaleontology.

  • Vonhof, H.B.;Brinkhuis, H.;Montanari, A. &Nederbragt, A. 2000. Global cooling acclerated by early late Eocene impacts? — Geology28: 687–690.

    Google Scholar 

  • Wall, D. &Dale, B. 1974. Dinoflagellates in late Quaternary deep-water sediments of Black Sea. — In:Degens, E.T. &Ross, D.A., Hrsg., The Black Sea — Geology, chemistry and biology. — American Association of Petroleum Geologists Memoir20: 364–380.

    Google Scholar 

  • Wall, D.;Dale, B. &Harada, K. 1973. Descriptions of new fossil dinoflagellates from the late Quaternary of the Black Sea. — Micropaleontology19: 18–31.

    Google Scholar 

  • Wall, D.;Dale, B.;Lohman, G.P. &Smith, W.K. 1977. The environmental and climatic distribution of dinoflagellate cysts in the North and South Atlantic Oceans and adjacent seas. — Marine Micropaleontology2: 121–200.

    Google Scholar 

  • Wefer, G.;Berger, W.H.;Bijma, J. &Fischer, G. 1999. Clues to ocean history: a brief overview of proxies. — In:Fischer, G. &Wefer, G., Hrsg., Use of proxies in paleoceanography. Examples from the South Atlantic: 1–68, Berlin (Springer).

    Google Scholar 

  • Williams, D.B. &Sarieant, W.A.S. 1967. Organic-walled microfossils as depth and shoreline indicators. — Marine Geology5: 389–412.

    Google Scholar 

  • Williams, G.L. 1977. Dinoflagellate cysts, their classification, biostratigraphy and palaeoecology. — In:Ramsay, A.T.S., Hrsg., Oceanic micropalaeontology: 1231–1325, London (Academic Press).

    Google Scholar 

  • Wolff, T.;Grieger, B.;Hale, W.;Dürkoop, A.;Mulitza, S.;Pätzold, J. &Wefer, G. 1999. On the reconstruction of paleosalinities. — In:Fischer, G. &Wefer, G., Hrsg., Use of proxies in paleoceanography. Examples from the South Atlantic: 207–228, Berlin (Springer).

    Google Scholar 

  • Zonneveld, K.A.F. 1995. Palaeoclimatical and palaeo-ecological changes during the last deglaciation in the Eastern Mediterranean; implications for dinoflagellate ecology. — Review of Palaeobotany and Palynology84: 221–253.

    Google Scholar 

  • Zonneveld, K.A.F. 1997. Dinoflagellate cyst distribution in surface sediments of the Arabian Sea (Northwestern Indian Ocean) in relation to temperature and salinity gradients in the upper water column. — Deep-Sea Research (II)44: 1411–1444.

    Google Scholar 

  • Zonneveld, K.A.F. 2003a. Chapter 5. Statistical Analysis. — In:Marret, F. &Zonneveld, K.A.F., Hrsg., Atlas of modern organic-walled dinoflagellate cyst distribution. — Review of Palaeobotany and Palynology2507: 167–174.

    Google Scholar 

  • Zonneveld, K.A.F. 2003b. Chapter 4. Geographical distribution. — In:Marret, F. &Zonneveld, K.A.F., Hrsg., Atlas of modern organic-walled dinoflagellate cyst distribution. — Review of Palaeobotany and Palynology2507: 21–167.

    Google Scholar 

  • Zonneveld, K.A.F. &Brummer, G.A. 2000. Ecological significance, transport and preservation of organic-walled dinoflagellate cysts in the Somali Basin, NW Arabian Sea. — Deep-Sea Research (II)9: 2229–2256.

    Google Scholar 

  • Zonneveld, K.A.F.;Hoek, R.P.;Brinkhuis, H. &Willems, H. 2001b. Geographical distributions of organic-walled dinoflagelate cysts in surficial sediments of the Benguela up-welling region and their relationship to upper ocean conditions. — Progress in Oceanography48: 25–72.

    Google Scholar 

  • Zonneveld, K.A.F.;Versteegh, G.J.M. &de Lange, G.J. 1997. Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: a 10,000 year natural experiment. — Marine Micropaleontology29: 393–405.

    Google Scholar 

  • Zonneveld, K.A.F.;Versteegh, G.J.M. &de Lange, G.J. 2001a. Palaeoproductivity and post-depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean SI sapropel. — Marine Geology172: 181–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pross, J., Kotthoff, U. & Zonneveld, K.A.F. Die Anwendung organischwandiger Dinoflagellatenzysten zur Rekonstruktion von Paläoumwelt, Paläoklima und Paläozeanographie: Möglichkeiten und Grenzen. Paläont. Z. 78, 5–39 (2004). https://doi.org/10.1007/BF03009128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03009128

Schlüsselwörter

Keywords

Navigation