Skip to main content
Log in

Les récepteurs des protons et de la capsaïcine: Contribution à la physiologie et la physiopathologie de la douleur

  • Published:
Douleur et Analgésie

Résumé

Les structures moléculaires de deux canaux ioniques activés par des ligands et présents dans les terminaisons nerveuses sensorielles nociceptives, le récepteur des protons ASIC et le récepteur de la capsaicine VR1, ont été récemment élucidées. Les canaux ASIC sont des canaux cationiques plutôt sélectifs pour le Na+ qui sont activés directement par une diminution du pH extracellulaire. Ils appartiennent à la superfamille des canaux Na+ sensibles à l’amiloride. Ils sont formés de plusieurs sous-unités homologues dont certaines sont aussi présentes dans le système nerveux central et qui peuvent s’assembler en homo- ou en hétéro-multiméres. Une combinaison particulière spécifique des neurones sensoriels (ASIC2b et ASIC3) a des propriétés proches de celles du cannal natif qui a été impliqué dans la perception de la douleur associée à une acidose tissulaire. VR1 est un canal cationique non sélectif très perméable au Ca2+ qui possède une structure différente de celle des canaux ASIC mais semblable à celle des canaux activés par la déplétion des stocks intracellulaires de Ca2+ VR1 est spécifiquement exprimé dans les neurones sensoriels et il est activé directement par les vanilliques comme la capsaicine. Il est surtout activé par la chaleur dans une gamme de températures douloureuses (à partir de 43°C). Ce seuil est considérablement abaissé par une diminution du pH extracellulaire et VR1 peut être activé à des températures physiologiques dans certaines conditions d’acidose. L’obtention de ces nouveaux outils moléculaires devrait permettre de mieux comprendre les mécanismes de la douleur associés à ces deux récepteurs et d’envisager le développement de nouveaux analgésiques capables de moduler leur activité.

Summary

The molecular cloning of two ligand-gated ion channels present in the primary afferent nociceptor terminal, i.e., the acid sensing ion channel ASIC and the capsaicin receptor VR1, was recently completed. ASICs are cationic channels rather selective for Na+ that are directly activated by a drop in the extracellular pH. They belong to the superfamily of amiloride-sensitive Na+ channels. They are composed of several homologous subunits, some of them being also present in the central nervous system, that can assemble in homo- or heteromultimers. A particular combination in the sensory neurons (ASIC2b and ASIC3) displays properties very close to that of the native channel involved in the perception of the non-adaptive pain associated with tissue acidosis. VR1 is a non-selective cationic channel that displays a high selectivity for Ca2+ and possess a structure different from that of ASIC but similar to that of store-operated channels (SOC). VR1 is specifically expressed in sensory neurons and is directly activated by vanilloid compounds like capsaicin. VR1 is also activated by noxious heat. The threshold for heat-evoked response is lowered by a decrease in the extracellular pH and VR1 is activated at normal physiological temperatures in the presence of low pH. The availability of these novel molecular probes will be important to study the pain mechanisms associated with these receptors and to develop new analgesic drugs that can modulate their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Adams C.M., Anderson M.G., Motto D.G., Price M.P., Johnson W.A. andWelsh M.J.: Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons.J. Cell. Biol. 140, 143–152, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Akaike N. andUeno S.: Proton induced current in neuronal cells.Prog. Neurobiol. 43, 73–83, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Barbry P. andHofman P.: Molecular biology of Na+ absorption.Am. J. Physiol. 273, G571-G585, 1997.

    PubMed  CAS  Google Scholar 

  4. Bassilana F., Champigny G., Waldmann R., de Weille J.R., Heurteaux C. andLazdunski M.: The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties.J. Biol. Chem. 272, 28819–28822, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Bevan S. andGeppetti P.: Protons: small stimulants of capsaicinsensitive sensory nerves.Trends Neurosci. 17, 509–512, 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Bevan S., Hothi S., Hughes G., James I.F., Rang H.P., Shah K., Walpole C.S. andYeats J.C.: Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin.Br. J. Pharmacol. 107, 544–552, 1992.

    PubMed  CAS  Google Scholar 

  7. Bevan S. andSzolcsanyi J.: Sensory neuron-specific actions of capsaicin: mechanisms and applications.Trends Pharmacol. Sci. 11, 330–333, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Bevan S. andYeats J.: Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones.J. Physiol. 433, 145–161, 1991.

    PubMed  CAS  Google Scholar 

  9. Canessa C., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J.D. andRossier B.C.: Amiloride-sensitive epithelial sodium channel is made of three homologous subunits.Nature 367, 463–467, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Canessa C.M., Horisberger J.D. andRossier B.C.: Epithelial sodium channel related to proteins involved in neurodegeneration.Nature 361, 467–470, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Caterina M.J., Schumacher M.A., Tominaga M., Rosen T.A., Levine J.D. andJulius D.: The capsaicin receptor: a heat-activated ion channel in the pain pathway.Nature 389, 816–824, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Chalfie M. andWolinski E.: The identification and suppression of inherited neurodegeneration inCaenorhabditis elegans.Nature 345, 410–416, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Chen C.C., England S., Akopian A.N. andWood J.N.: A sensory neuron-specific, proton-gated ion channel.Proc. Natl. Acad. Sci. USA,95, 10240–10245, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Coscoy S., Lingueglia E., Lazdunski M. andBarbry P.: The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer.J. Biol. Chem. 273, 8317–8322, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. Cottrell G.A.: The first peptide-gated ion channel.J. Exp. Biol. 200, 2377–2386, 1997.

    PubMed  CAS  Google Scholar 

  16. Darboux I., Lingueglia E., Pauron D., Barbry P. andLazdunski M.: A new member of the amiloride-sensitive sodium channel family in Drosophila melanogaster peripheral nervous system.Biochem. Biophys. Res. Commun. 246, 210–216, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Davies N.W., Lux H.D. andMorad M.: Site and mechanism of activation of proton-induced sodium current in chick dorsal root ganglion neurons.J. Physiol. 400, 159–187, 1988.

    PubMed  CAS  Google Scholar 

  18. Dray A., Forbes C.A. andBurgess G.M.: Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptorsin vitro.Neurosci. Lett. 110, 52–59, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Driscoll M. andChalfie M.: TheMec-4 gene is a member of a family ofCaenorhabditis elegans genes that can mutate to induce neuronal degeneration.Nature 349, 588–593, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Firsov D., Gautschi I., Merillat A.M., Rossier B.C. andSchild L.: The heterotetrameric architecture of the epithelial sodium channel (ENaC).Embo. J. 17, 344–352, 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia-Anoveros J. andCorey D.P.: Touch at the molecular level. Mechanosensation.Curr. Biol. 6, 541–543, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Anoveros J., Derfler B., Neville-Golden J., Hyman B.T. andCorey D.P.: BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels.Proc. Natl. Acad. Sci. USA94, 1459–1464, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Gottmann K., Dietzel I.D., Lux H.D. andRuedel C.: Proton-induced Na+ current develops prior to voltage-dependent Na+ and Ca2+ currents in neuronal precursor cells from chick dorsal root ganglion.Neurosci. Lett. 99, 90–94, 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Grantyn R. andLux H.: Similarity and mutual exclusion of NMDA and proton activated transient Na+ currents in rat tectal neurons.Neurosci. Lett. 89, 198–203, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Grantyn R., Perouansky M., Rodriguez-Tebar A. andLux H.D.: Expression of depolarizing voltage- and transmitter-activated currents in neuronal precrsor cells from the rat brain is preceded by a proton- activated sodium current.Brain Res. Dev. Brain Res. 49, 150–155, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Huang M. andChalfie M.: Gene interactions affecting mechanosensory transduction inCaenorhabditis elegans.Nature 367, 467–470, 1994.

    Article  PubMed  CAS  Google Scholar 

  27. Konnerth A., Lux H.D. andMorad M.: Proton-induced transformation of calcium channel in chick dorsal root ganglion cells.J. Physiol. 386, 603–633, 1987.

    PubMed  CAS  Google Scholar 

  28. Korkushko A.O., Kryshtal O.A., Bessonov B.I. andKlyshta M.D.: [Blocking by amiloride of hydrogen ion-activated sodium permeability of sensory neuron membranes]. Vrach Delo, 84–87, 1984.

  29. Kosari F., Sheng S., Li J., Mak D.O., Foskett J.K. andKleyman T.R.: Subunit stoichiometry of the epithelial sodium channel.J. Biol. Chem. 273, 13469–13474, 1998.

    Article  PubMed  CAS  Google Scholar 

  30. Kovalchuk Y.N., Krishtal O.A. andNowycky M.C.: The proton-activated inward current of rat sensory neurons includes a calcium component.Neurosci. Lett. 115, 237–242, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Kress M., Fetzer S., Reeh P.W. andVyklicky L.: Low pH facilitates capsaicin responses in isolated sensory neurons of the rat.Neurosci. Lett. 211, 5–8, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Krishtal O.A. andPidoplichko V.I.: A receptor for protons in small neurons of trigeminal ganglia: possible role of nociception.Neurosci. Lett. 24, 243–246, 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Krishtal O.A. andPidoplichko V.I.: A receptor for protons in the membrane of sensory neurons may participate in nociception.Neuroscience 6, 2599–2601, 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Krishtal O.A. andPidoplichko V.I.: A receptor for protons in the nerve cell membrane.Neuroscience 5, 2325–2327, 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Lai C., Hong K., Kinnell M., Chalfie M. andDriscoll M.: Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction inCaenorhabditis elegans.J. Cell Biol. 133, 1071–1081, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Lingueglia E., Champigny G., Lazdunski M. andBarbry P.: Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel.Nature 378, 730–733, 1995.

    Article  PubMed  CAS  Google Scholar 

  37. Lingueglia E., de Weille J.R., Bassilana F., Heurteaux C., Sakai H., Waldmann R. andLazdunski M.: A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells.J. Biol. Chem. 272, 29778–29783, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Lingueglia E., Voilley N., Waldmann R., Lazdunski M. andBarbry P.: Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies toCaenorhabditis elegans degenerins.FEBS Lett. 318, 95–99, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. Liu J., Schrank B. andWaterston R.H.: Interaction between a putative mechanosensory membrane channel and a collagen.Science 273, 361–364, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Liu L. andSimon S.A.: A rapid capsaicin-activated current in rat trigeminal ganglion neurons.Proc. Natl. Acad. Sci. USA,91, 738–741, 1994.

    Article  PubMed  CAS  Google Scholar 

  41. Montell C.: New light on TRP and TRPL.Mol. Pharmacol. 52, 755–763, 1997.

    PubMed  CAS  Google Scholar 

  42. Petersen M. andLaMotte R.H.: Effect of protons on the inward current evoked by capsaicin in isolated dorsal root ganglion cells.Pain 54, 37–42, 1993.

    Article  PubMed  CAS  Google Scholar 

  43. Price M.P., Snyder P.M. andWelsh M.J.: Cloning and expression of a novel brain Na+ channel.J. Biol. Chem. 271, 7879–7882, 1996.

    Article  PubMed  CAS  Google Scholar 

  44. Reeh P.W. andSteen K.H.: Tissue acidosis in nociception and pain.Prog. Brain Res. 113, 143–151, 1996.

    Article  PubMed  CAS  Google Scholar 

  45. Renard S., Lingueglia E., Voilley N., Lazdunski M. andBarbry P.: Biochemical analysis of the membrane topology of the amiloridesensitive Na+ channel.J. Biol. Chem. 269, 12981–12986, 1994.

    PubMed  CAS  Google Scholar 

  46. Sontheimer H., Perouansky M., Hoppe D., Lux H., Grantyn R. andKettenmann H.: Glial cells of the oligodendrocyte lineage express proton activated Na+ channels.J. Neurosci. Res. 24, 496–500, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Steen K.H., Issberner U. andReeh P.W.: Pain due to experimental acidosis in human skin: evidence for non-adapting nociceptor excitation.Neurosci. Lett. 199, 29–32, 1995.

    Article  PubMed  CAS  Google Scholar 

  48. Szallasi A. andBlumberg P.M.: Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper.Neuroscience 30, 515–520, 1989.

    Article  PubMed  CAS  Google Scholar 

  49. Tominaga M., Caterina M.J., Malmberg A.B., Rosen T.A., Gilbert H., Skinner K., Raumann B.E., Basbaum A.I. andJulius D.: The cloned capsaicin receptor integrates multiple pain-producing stimuli.Neuron 21, 531–543, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Ueno S., Nakaye T. andAkaike N.: Proton-induced sodium current in freshly dissociated hypothalamic neurones of the rat.J. Physiol. 447, 309–327, 1992.

    PubMed  CAS  Google Scholar 

  51. Waldmann R., Bassilana F., De Weille J.R., Champigny G., Heurteaux C. andLazdunski M.: Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons.J. Biol. Chem. 272, 20975–20978, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Waldmann R., Champigny G., Bassilana F., Heurteaux C. andLazdunski M.: A proton-gated cation channel involved in acid sensing.Nature 386, 173–177, 1997.

    Article  PubMed  CAS  Google Scholar 

  53. Waldmann R., Champigny G., Voilley N., Lauritzen I. andLazdunski M.: The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration inC. elegans.J. Biol. Chem. 271, 10433–10436, 1996.

    Article  PubMed  CAS  Google Scholar 

  54. Waldmann R. andLazdunski M.: Proton-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels.Current Opinion in Neurobiology 8, 418–424, 1998.

    Article  PubMed  CAS  Google Scholar 

  55. Winter J., Dray A., Wood J.N., Yeats J.C. andBevan S.: Cellular mechanism of action of resiniferatoxin: a potent sensory neuron excitotoxin.Brain Res. 520, 131–140, 1990.

    Article  PubMed  CAS  Google Scholar 

  56. Wood J.N., Winter J., James I.F., Rang H.P., Yeats J. andBevan S.: Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture.J. Neurosci. 8, 3208–3220, 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Texte présenté d’un cours de perfectionnement, intitulé «Douleur et Canaux loniques» qui s’est tenu dans le cadre de la 22e réunion annuelle de la SFD, le 19 novembre 1998 à Versailles.

About this article

Cite this article

Lingueglia, E. Les récepteurs des protons et de la capsaïcine: Contribution à la physiologie et la physiopathologie de la douleur. Doul. et Analg. 12, 243–249 (1999). https://doi.org/10.1007/BF03008489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03008489

Key words

Navigation