On the growth of meromorphic functions of infinite order

Article

Abstract

Letf be a meromorphic function of infinite order,T(r, f) its Nevanlinna (or Ahlfors-Shimizu) characteristic, andM(r, f) its maximum modulus. It is proved that
$$\mathop {\lim \inf }\limits_{r \to \infty } \frac{{\log M(r,f)}}{{rT'(r,f)}} \leqslant \pi and\mathop {\lim \inf }\limits_{r \to \infty } \frac{{\log M(r,f)}}{{T(r,f)\psi (log T(r,f))}} = 0$$
. if ϕ (x)/x is non-decreasing, ϕ′(x)<-√ϕ(x) and ∝ dx/ϕ(x) < ∞.

Keywords

Entire Function Meromorphic Function Absolute Constant Maximum Modulus Infinite Order 

References

  1. [1]
    W. Bergweiler,Maximum modulus, characteristic, and area on the sphere, Analysis10 (1990), 163–176.Erratum: Analysis12 (1992), 67–69.MATHMathSciNetGoogle Scholar
  2. [2]
    C. T. Chuang,Sur la croissance des fonctions, Kexue Tongbao26 (1981), 677–684.MATHGoogle Scholar
  3. [3]
    C. J. Dai, D. Drasin and B. Q. Li,On the growth of entire and meromorphic functions of infinite order, J. Analyse Math.55 (1990), 217–228. Correction: J. Analyse Math.57 (1991), 299.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    W. H. J. Fuchs,Topics in Nevanlinna theory, inProceedings of the NRL Conference on Classical Function Theory, U.S. Government Printing Office, Washington, D.C., 1970, pp. 1–32.Google Scholar
  5. [5]
    N. V. Govorov,The Paley conjecture, Funkcional. Anal. i. Prilozen3 (1969), 41–45.MATHMathSciNetGoogle Scholar
  6. [6]
    W. K. Hayman,Meromorphic Functions, Clarendon Press, Oxford, 1964.MATHGoogle Scholar
  7. [7]
    G. Jank and L. Volkmann,Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel-Boston-Stuttgart, 1985.MATHGoogle Scholar
  8. [8]
    I. I. Marchenko and A. I. Shcherba,Growth of entire functions, Sib. Math. J.25 (1984), 598–605.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    R. Nevanlinna,Analytic Functions, Springer, New York-Heidelberg-Berlin, 1970.MATHGoogle Scholar
  10. [10]
    V. N. Petrenko,Growth of functions of finite lower order, Math. USSR — Izvestija3 (1969), 391–432.MATHCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1994

Authors and Affiliations

  1. 1.Lehrstuhl II für MathematikRWTH AachenAachenGermany

Personalised recommendations