Skip to main content
Log in

Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease

  • Original Articles
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background. Whether left ventricular ejection fraction (EF) obtained by gated rubidium 82 positron emission tomography (PET) myocardial imaging can identify patients at risk for future cardiac events is unclear.

Methods and Results. Consecutive patients with known or suspected coronary artery disease who underwent dipyridamole stress gated Rb-82 PET imaging were evaluated. Scoring of perfusion was accomplished by use of a 17-segment model. EF was automatically generated. Patients were stratified based on summed stress scores (SSSs) (0–3, 4–8, or >8) and stress EF (>50%, 40%–49%, or <40%). All-cause mortality was determined by use of the Social Security Death Index. Of 1,441 patients, 132 (9.2%) died during mean follow-up of 2.7±0.8 years. Annualized mortality rates across SSS groups were 2.4% for SSS of 0 to 3, 4.1% for SSS of 4 to 8, and 6.9% for SSS greater than 8 (P<.001). Similarly, annualized mortality rates were 2.4%, 6.2%, and 9.2% for the group with EF greater than 50%, group with EF of 40% to 49%, and group with EF lower than 40%, respectively (P<.001). On multivariate analysis, the addition of EF to clinical and perfusion variables significantly increased the globalX2 (73.3 to 107.7,P<.001). Integration of EF with SSS significantly enhanced risk stratification.

Conclusion. EF assessed by stress gated Rb-82 PET imaging provides independent and incremental prognostic information and, hence, should be routinely incorporated in risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones RH, Johnson SH, Bigelow C, Pieper KS, Coleman RE, Cobb FR, et al. Exercise radionuclide angiocardiography predicts cardiac death in patients with coronary artery disease. Circulation 1991;84:I52–8.

    PubMed  CAS  Google Scholar 

  2. Johnson SH, Bigelow C, Lee KL, Pryor DB, Jones RH. Prediction of death and myocardial infarction by radionuclide angiocardiography in patients with suspected coronary artery disease. Am J Cardiol 1991;67:919–26.

    Article  PubMed  CAS  Google Scholar 

  3. Lee KL, Pryor DB, Pieper KS, Harrell FE Jr, Califf RM, Mark DB, et al. Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease. A comparison with clinical and catheterization variables. Circulation 1990;82:1705–17.

    PubMed  CAS  Google Scholar 

  4. Ababneh AA, Sciacca RR, Kim B, Bergmann SR. Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: Influence of tracer, gender, and acquisition camera. J Nucl Cardiol 2000;7:661–8.

    Article  PubMed  CAS  Google Scholar 

  5. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–47.

    PubMed  CAS  Google Scholar 

  6. Petix NR, Sestini S, Coppola A, Marcucci G, Nassi F, Taiti A, et al. Prognostic value of combined perfusion and function by stress technetium-99m sestamibi gated SPECT myocardial perfusion imaging in patients with suspected or known coronary artery disease. Am J Cardiol 2005;95:1351–7.

    Article  PubMed  Google Scholar 

  7. Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: Risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001;42:831–7.

    PubMed  CAS  Google Scholar 

  8. Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100:1035–42.

    PubMed  CAS  Google Scholar 

  9. Travin MI, Heller GV, Johnson LL, Katten D, Ahlberg AW, Isasi CR, et al. The prognostic value of ECG-gated SPECT imaging in patients undergoing stress Tc-99m sestamibi myocardial perfusion imaging. J Nucl Cardiol 2004;11:253–62.

    Article  PubMed  Google Scholar 

  10. Bateman TM, Berman DS, Heller GV, Brown KA, Cerqueira MD, Verani MS, et al. American Society of Nuclear Cardiology position statement on electrocardiographic gating of myocardial perfusion SPECT scintigrams. J Nucl Cardiol 1999;6:470–1.

    Article  PubMed  CAS  Google Scholar 

  11. Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med 2005;35:17–36.

    Article  PubMed  Google Scholar 

  12. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24–33.

    Article  PubMed  Google Scholar 

  13. Freedman N, Schechter D, Klein M, Marciano R, Rozenman Y, Chisin R. SPECT attenuation artifacts in normal and overweight persons: Insights from a retrospective comparison of Rb-82 positron emission tomography and TI-201 SPECT myocardial perfusion imaging. Clin Nucl Med 2000;25:1019–23.

    Article  PubMed  CAS  Google Scholar 

  14. Go RT, Marwick TH, MacIntyre WJ, Saha GB, Neumann DR, Underwood DA, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899–905.

    PubMed  CAS  Google Scholar 

  15. Marwick TH, Go RT, MacIntyre WJ, Saha GB, Underwood DA. Myocardial perfusion imaging with positron emission tomography and single photon emission computed tomography: Frequency and causes of disparate results. Eur Heart J 1991;12:1064–9.

    PubMed  CAS  Google Scholar 

  16. Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:1303–10.

    Article  PubMed  CAS  Google Scholar 

  17. Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997;80:865–70.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 2006;48:1029–39.

    Article  PubMed  Google Scholar 

  19. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  20. Saab G, Dekemp RA, Ukkonen H, Ruddy TD, Germano G, Beanlands RS. Gated fluorine 18 fluorodeoxyglucose positron emission tomography: Determination of global and regional left ventricular function and myocardial tissue characterization. J Nucl Cardiol 2003;10:297–303.

    Article  PubMed  Google Scholar 

  21. Schaefer WM, Lipke CS, Nowak B, Kaiser HJ, Reinartz P, Buecker A, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: Comparison with cardiac MRI. J Nucl Med 2004;45:74–9.

    PubMed  Google Scholar 

  22. Willemsen AT, Siebelink HJ, Blanksma PK, Paans AM. Automated ejection fraction determination from gated myocardial FDG-PET data. J Nucl Cardiol 1999;6:577–82.

    Article  PubMed  CAS  Google Scholar 

  23. Curb JD, Ford CE, Pressel S, Palmer M, Babcock C, Hawkins CM. Ascertainment of vital status through the National Death Index and the Social Security Administration. Am J Epidemiol 1985;121:754–66.

    Article  PubMed  CAS  Google Scholar 

  24. Kung HC, Hoyert DL, Xu J, Murphy SL. Deaths: Preliminary data for 2005. Health E-Stats 2007.

  25. Tamaki N, Ruddy TD, deKemp RA, Beanlands R. Myocardial perfusion. In: Wahl R, editor. Principles and practice of positron emission tomography. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 320–33.

    Google Scholar 

  26. Gould KL, Goldstein RA, Mullani NA, Kirkeeide RL, Wong WH, Tewson TJ, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 1986;7:775–89.

    PubMed  CAS  Google Scholar 

  27. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL, Mullani NA, Smalling RW, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989;79:825–35.

    PubMed  CAS  Google Scholar 

  28. Gould KL. Does positron emission tomography improve patient selection for coronary revascularization? J Am Coll Cardiol 1992;20:566–8.

    Article  PubMed  CAS  Google Scholar 

  29. Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med 2007;48:783–93.

    Article  PubMed  Google Scholar 

  30. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82Rb PET/CT study. J Nucl Med 2007;48:349–58.

    PubMed  Google Scholar 

  31. Brown TL, Merrill J, Volokh L, Bengel FM. Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated (82)rubidium myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2008;35:336–42.

    Article  PubMed  Google Scholar 

  32. Newman TB, Brown AN. Use of commercial record linkage software and vital statistics to identify patient deaths. J Am Med Inform Assoc 1997;4:233–7.

    PubMed  CAS  Google Scholar 

  33. Lauer MS, Blackstone EH, Young JB, Topol EJ. Cause of death in clinical research: Time for a reassessment? J Am Coll Cardiol 1999;34:618–20.

    Article  PubMed  CAS  Google Scholar 

  34. Aronow WS, Ahn C, Kronzon I. Prognosis of congestive heart failure in elderly patients with normal versus abnormal left ventricular systolic function associated with coronary artery disease. Am J Cardiol 1990;66:1257–9.

    Article  PubMed  CAS  Google Scholar 

  35. Brodie BR, Stuckey TD, Hansen CJ, Cooper TR, Weintraub RA, LeBauer EJ, et al. Importance of a patent infarct-related artery for hospital and late survival after direct coronary angioplasty for acute myocardial infarction. Am J Cardiol 1992;69:1113–9.

    Article  PubMed  CAS  Google Scholar 

  36. Cleland JG, Massie BM, Packer M. Sudden death in heart failure: Vascular or electrical? Eur J Heart Fail 1999;1:41–5.

    Article  PubMed  CAS  Google Scholar 

  37. Hannan EL, Racz MJ, Walford G, Jones RH, Ryan TJ, Bennett E, et al. Long-term outcomes of coronary-artery bypass grafting versus stent implantation. N Engl J Med 2005;352:2174–83.

    Article  PubMed  CAS  Google Scholar 

  38. O’Connor CM, Velazquez EJ, Gardner LH, Smith PK, Newman MF, Landolfo KP, et al. Comparison of coronary artery bypass grafting versus medical therapy on long-term outcome in patients with ischemic cardiomyopathy (a 25-year experience from the Duke Cardiovascular Disease Databank). Am J Cardiol 2002;90:101–7.

    Article  PubMed  Google Scholar 

  39. Smith PK, Califf RM, Tuttle RH, Shaw LK, Lee KL, Delong ER, et al. Selection of surgical or percutaneous coronary intervention provides differential longevity benefit. Ann Thorac Surg 2006;82:1420–8, discussion 1428–9.

    Article  PubMed  Google Scholar 

  40. Tarakji KG, Brunken R, McCarthy PM, Al-Chekakie MO, Abdel-Latif A, Pothier CE, et al. Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation 2006;113:230–7.

    Article  PubMed  Google Scholar 

  41. Santana CA, Shaw LJ, Garcia EV, Soler-Peter M, Candell-Riera J, Grossman GB, et al. Incremental prognostic value of left ventricular function by myocardial ECG-gated FDG PET imaging in patients with ischemic cardiomyopathy. J Nucl Cardiol 2004;11:542–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary V. Heller MD, PhD.

Additional information

Supported in part by an unrestricted research grant from Bracco Diagnostics, Princeton, NJ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lertsburapa, K., Ahlberg, A.W., Bateman, T.M. et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 15, 745–753 (2008). https://doi.org/10.1007/BF03007355

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03007355

Key Words

Navigation