Skip to main content
Log in

Maximuma posteriori semi-blind channel estimation for ofdm systems operating on highly frequency and time selective channels

Estimation de Canal Selon le MaximumA Posteriori semi-aveugle pour des Systèmes OFDM Fonctionnant sur des Canaux Très sélectifs en Temps et en Fréquence

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

We propose a semi-blind block-by-block channel estimation algorithm for ofdm systems operating in highly frequency and time selective channels. This algorithm, based on the Expectation-Maximization algorithm, performs an iterative maximum a posteriori estimation of the channel. It can incorporate the coded structure of each coded block in a turbo-processing fashion to enhance channel estimation quality. Moreover, it can use the maximum a posteriori training-based channel estimation algorithm for its optimum initialization. The performance of this channel estimation algorithm is evaluated through simulation results, with and without turbo-processing and optimum initialization. It is also compared to two benchmarks based on least-square error channel estimation. Our algorithm can be potentially applied for the efficient estimation of the propagation channel in drm, dvb-t, hiper-LAN/2 and IEEE 802.11a systems.

Résumé

On propose un algorithme d’estimation de canal, semi-aveugle et bloc par bloc, pour des systèmes ofdm fonctionnant sur des canaux très sélectifs en temps et en fréquence. Basé sur l’algorithme » Expectation-Maximization «, cet algorithme effectue une estimation itérative selon le maximum a posteriori. Il peut incorporer selon un traitement turbo la structure codée de chaque bloc afin d’améliorer la qualité de l’estimation de canal. De plus, il peut utiliser l’algorithme d’estimation selon le maximum a posteriori avec apprentissage pour son initialisation optimale. La performance de cet algorithme d’estimation de canal est évaluée àtravers des résultats de simulation avec ou sans traitement turbo et initialisation optimale. Elle est aussi comparée àdeux algorithmes de référence basés sur l’estimation selon les moindres carrés. Notre algorithme peut être potentiellement appliqué àl’estimation efficace du canal de propagation dans les systèmes drm, dvb-t, hiperlan/2 et ieee 802.11a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stein (S.), Fading Channel Issues in System Engineering,ieee (jsac) Journal on Selected Areas in Communications. February 1987,SAC-5, n° 2.

  2. Sklar (B.), Rayleigh Fading Channels in Mobile Digital Communication Systems — Part I: Characterization.ieee Communications Magazine. September 1997.

  3. Lodge (J. H.), Moher (M. L.), Maximum Likelihood Sequence Estimation of cmp Signals Transmitted over Rayleigh Flat Fading Channels,ieee Transactions on Communications. June 1990,38, n° 6, pp.787–794.

    Article  Google Scholar 

  4. Yu (X.), Pasupathy (S.), Innovations-Based Mlse for Rayleigh Fading Channels.IEEE Transactions on Communications. February/March/April 1995,43, n° 2/3/4.

  5. Matolak (D. W.), Wilson (S. G.), Detection for Statistically Known Time-Varying Dispersive Channel.IEEE Transactions on Communications. December 1996,44, n° 12.

  6. Georghiades (C. N.), Han (J. C), Sequence Estimation in the Presence of Random Parameters Via the em Algorithm.ieee Transactions on Communications. March 1997,45, n° 3.

  7. Hart (B. D.), Pasupathy (S.), Innovations-Based MAP Detection for Time-Varying Frequency-Selective Channels.IEEE Transactions on Communications, September 2000,48, n° 9.

    Google Scholar 

  8. ETSI, Radio Broadcasting Systems; Digital Audio Broadcasting (dab) to Mobile Portable and Fixed Receivers. ets 3000 401, Second Edition, 1997.

  9. http://www. worlddab. org/dab/aboutdab_home. htm

  10. Trigui (H.), Slock (S.), Training Sequence Aided Multichannel Identification in the Presence of Interference and Noise.ieee Globecom Conference. Sydney, Australia, November 1998.

  11. Schramm (P.), Muller (R. R.), Pilot Symbol Assisted Bpsk on Rayleigh Fading Channels with Diversity: Performance Analysis and Parameter Optimization.ieee Transactions on Communications. December 1998,46, n° 12.

  12. Li (Y.), Seshadri (N.), Ariyavisitakul (S.), Channel Estimation for ofdm Systems with Transmitter Diversity in Mobile Wireless Channels,IEEE Journal of Selected Areas in Communications, March 1999,17, n° 3.

  13. Kim (S. R.), Jeong (Y. G.), Choi (I.-K.), Lee (S.), An Adaptive Pilot Symbol-Aided mmse Receiver in Fading Channels.Proceedings of the IEEE International Conference on Communications, ICC’99. Vancouver B.C., Canada, June 6–10, 1999.

    Google Scholar 

  14. Onizawa (T.), Mizoguchi (M), Sakata (T.), Morikura (M.), A Simple Adaptive Channel Estimation Scheme for ofdm Systems,Proceedings of the IEEE Vehicular Technology Conference (VTC ‘99-Fall). Amsterdam, September 1999.

  15. Tsatsanis (M. K.), Xu (Z.), Pilot Symbol Assisted Modulation in Frequency Selective Fading Wireless Channels.ieee Transactions on Signal Processing. August 2000,48, n° 8, pp. 2353–2365.

    Article  Google Scholar 

  16. Siala (M.), Maximum a Posteriori Fast Fading Channel Estimation Based Exclusively on Pilot Symbols.Annales des Télécommunications,56, Septembre/Octobre 2001, n° 9–10.

  17. Siala (M.), Jaffrot (E.). Procédé d’Estimation Optimale d’un Canal de Propagation Reposant Uniquement sur les Symboles Pilotes et Estimateur Correspondant. Demande de brevet français n° 00.11715 du 14 septembre 2000.

  18. Moulines (E.), Duhamel (P.), Cardoso (J. F.), Mayrargue (S.), Subspace Methods for the Blind Identification of Multichannel fir Filters.ieee Transactions on Signal Processing. February 1995,43, n° 2, pp. 516–526.

    Article  Google Scholar 

  19. Abed-Meraim (K.), Cardoso (J. F.), Gorokhov (A.), Loubaton (P.), Moulines (E.), On Subspace Methods for Blind Identification of Single-Input Multiple-Output Fir Systems.IEEE Transactions on Signal Processing. January 1997,45, n° 1, pp. 42–56.

    Article  Google Scholar 

  20. Tsatsanis (M. K.), Giannakis (G. B.), Transmitter Induced Cyclostationarity for Blind Channel Equalization.ieee Transactions on Signal Processing. July 1997,45, pp. 1785–1794.

    Article  MATH  Google Scholar 

  21. Tong (L.), Perreau (S.). Blind Channel Estimation: From Subspace to Maximum Likelihood Methods.ieee Proceedings. 1998,86, n° 10, pp 1951–1968.

    Article  Google Scholar 

  22. Muquet (B.), de Courville (M.), Duhamel (P.), Buzenac (V.), A Subspace-Based Blind and Semi-Blind Channel Identification Method for OFDM Systems.Signal Processing Advances in Wireless Communications. Annapolis, ml, usa, May 1999.

  23. Tong (L.), Zhao (Q.), Joint Order Detection and Blind Channel Estimation by Least Squares Smoothing.ieee Transactions on Signal Processing. September 1999,47, n° 9, pp. 2345–2355.

    Article  MATH  Google Scholar 

  24. Zhou (S.), Giannakis (G. B.), Finite-Alphabet Based Channel Estimation for ofdm and Related Multi-Carrier Systems.Proceedings of the 34th Conference on Information Sciences and Systems (CISS’00). Princeton University, Princeton, NJ, March 15–17, 2000.

    Google Scholar 

  25. Tepedelenlioglu (C), Giannakis (G. B.), Transmitter Redundancy for Blind Estimation and Equalization of Time- and Frequency-Selective Channels,IEEE Transactions on Signal Processing. July 2000,48, n° 7, pp. 2029–2043.

    Article  Google Scholar 

  26. Raheli (R.), Polydoros (A.), Tzou (C.-K.). Per-Survivor Processing: A General Approach to mlse in Uncertain Environments.ieee Transactions on Communications. February/March/April 1995,43, 2/3/4, pp. 354–264.

    Article  Google Scholar 

  27. Chang (K.-H.), Georghiades (C.N.), Iterative Joint Sequence and Channel Estimation for Fast Time-Varying Intersymbol Interference Channels.Proceedings of the IEEE International Conference on Communications (ICC). June 1995, pp. 357–361.

  28. Li (Y.), Cimini (L. J.), Sollenberger (N.R.), Robust Channel Estimation for ofdm Systems with Rapid Dispersive Fading Channels.IEEE Transactions on Communications. July 1998,46, n° 7.

  29. Joham (M.), Utschick (W.), Nossek (J. A.), Zoltowski (M.), Semi-Blind Channel Estimation: A New Least-Squares Approach.Proceedings of the International Conference on Telecommunications. Cheju, Korea, 1999, pp. 416–420.

  30. Siala (M.), Duponteil (D.), Maximum a Posteriori Multipath Channel Estimation for utra/fdd.frames Workshop. Delft, The Netherlands, January 18 and 19, 1999.

  31. Siala (M.), Duponteil (D.), Iterative Rake Receiver with map Channel Estimation for ds-cdma Systems.Annals of Telecommunications, March-April 1999,54, n° 3–4.

  32. Siala (M.), Duponteil (D.). Maximum a Posteriori Multipath Fading Channel Estimation for cdma Systems.Proceedings of the ieee Vehicular Technology Conference (VTC ’99). Houston, Texas, May 16–20, 1999.

  33. Siala (M.), Jaffrot (E.), Semi-Blind Maximum a Posteriori Fast Fading Channel Estimation for Multicarrier Systems.Dix-septième colloque gretsi. Vannes, 13–17 September, 1999.

  34. Siala (M.), Jaffrot (E.), Récepteur a multiplexage par répartition en fréquences orthogonales avec estimation itérative de canal et procédé correspondant. Demande de brevet français n° 99.11415, 13 septembre 1999.

  35. Siala (M.), Bru Gibert (R.). Semi-Blind Maximuma Posteriori Multipath Fast Fading Channel Estimation for TDMA Systems.VTC ‘99 Fall. Amsterdam, The Netherlands, September 19–22, 1999.

    Google Scholar 

  36. Al-Susa (E.), A predictor-Based Decision Feedback Channel Estimation Method for cofdm with High Resilience to Rapid Time-Variations.Proceedings of the ieee Vehicular Technology Conference (VTC’99-Fall). Amsterdam, September 1999.

  37. Komninakis (C), Wesel (R. D.), Pilot-Aided Joint Data and Channel Estimation in Flat Correlated Fading.Proceedings of the ieee Global Communications Conference globecom ‘99. 1999.

  38. Yan (M.), Rao (B. D.), Joint Estimation of Fading Channel and Data with Antenna Arrays.33rd Asilomar Conference on Signals, Systems and Computers. October 24–27, 1999.

  39. Jaffrot (E.), Siala (M.), Turbo Channel Estimation for ofdm Systems on Highly Time and Frequency Selective Channels.icassp 2000. Istanbul, Turkey, June 2000.

  40. Unal (B.), Siala (M.,. Sensitivity of the Semi-Blind Iterative map Channel Estimation for ds-cdma Systems.iee Electronic Letters. March 16, 2000,36, n° 6.

  41. Valenti (M.C.), Iterative Channel Estimation for Turbo Codes Over Fading Channels.Proceedings of Wireless Communications and Networking Conference (wcnc) 2000. Chicago, IL, September 2000.

  42. Brugger (R.), Single-Frequency Networks at 1.5 Ghz for Digital Audio Broadcasting.European Broadcasting Union (EBU)-Review-Technical. Winter 1993.

  43. Malmgren (G.), On Local/Regional Single Frequency Networks.Proceedings Nordiskt Radiosymposium, NRS-95. Stockholm, 1995.

  44. Malmgren (G.), Impact of Carrier Frequency Offset, Doppler Spread and Time Synchronisation Errors in OFDM Based sfn.Globecom ‘96. London, U.K., November 1996.

    Google Scholar 

  45. Malmgren (G.), On the Performance of Single Frequency Networks in Correlated Shadow Fading.ieee Transactions on Broadcasting. 1997,43, n° 3.

  46. Mignone (V.), Morello (A.), Visintin (M.), An Advanced Algorithm for Improving dvb-t Coverage in sfn.Proceedings of the International Broadcasting Convention. September 1997.

  47. Sari (H.), Karam (G.), Jeanclaude (I.), Transmission Techniques for Digital Terrestrial Television Broadcasting.ieee Communications Magazine. February 1995, pp. 100–109.

  48. Van de Beek (J.-J.), Edfors (O.), Sandell (M.), Wilson (S. K.), Börjesson (P. O.), On Channel Estimation in OFDM Systems.Proceedings of the ieee Vehicular Technology Conference (VTC ‘95). Chicago, IL., July 1995,2, pp. 815–819.

    Google Scholar 

  49. Edfors (O.), Sandell (M.), Van de Beek (J.-J.), Wilson (S. K.), Börjesson (P. O.), ofdm Channel Estimation by Singular Value Decomposition.Proceedings of Ieee Vehicular Technology Conference (vtc ‘96). Atlanta, GA, April 1996, pp. 923–927.

  50. Edfors (O.), Sandell (M.), Van de Beek (J.-J.), Wilson (S. K.), Börjesson (P. O.), ofdm Channel Estimation by Singular Value Decomposition.ieee Transactions on Communications, July 1998,46, n° 7, pp. 931–939.

    Article  Google Scholar 

  51. Edfors (O.), Sandell (M.), Van de Beek (J.-J.), Wilson (S. K.), Börjesson (P. O.), Analysis of DFT-Based Channel Estimators for ofdm.Personal Wireless Communication, Kluwer Academic Publishers. January 2000,12, n° 1.

  52. Dempster (A. P.), Laird (N. M.), Rubin (D. B.), Maximum likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society. 1977,39.

  53. Kaleh (G. K.), Joint carrier phase estimation and symbol decoding of trellis codes.European Transactions on Telecommunications and Related Technologies. San Diego, Ca, January 1990.

  54. Kawas Kaleh (G.), Vallet (R.), Joint Parameter Estimation and Symbol Detection for Linear or Nonlinear Unknown Channels,IEEE Transactions on Communications, July 1994,42, n° 7, pp. 2406–2413.

    Article  MATH  Google Scholar 

  55. Kawas Kaleh (G.), The Baum-Welch Algorithm for the Detection of Time-Unsynchronized Rectangular PAM Signals.ieee Transactions on Communications, February/March/April 1994,42, n° 2/3/4, pp. 260–262.

    Article  Google Scholar 

  56. Georghiades (C. N.), Han (J. C), Sequence estimation in the presence of random parameters via the em algorithm.IEEE Transactions on Communications, March 1997,45, n° 3.

    Google Scholar 

  57. Bahl (L. R.), Cocke (J.), Jelinek (F.), Raviv (J.), Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate.IEEE Transactions on Information Theory. March 1974,20.

  58. Proakis (J. G.), Digital Communications,Third edition, McGraw-Hill, New York (1995).

    Google Scholar 

  59. http://www.drm.org

  60. etsi. Digital Video Broadcasting (dvb); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television (dvb-t). ets 300 744. March 1997.

  61. etsi. Digital Video Broadcasting (dvb); Implementation Guidelines for dvb Terrestrial Services; Transmission Aspects. tr 101 190, September 1997.

  62. etsi. Digital Video Broadcasting (dvb); dvb Mega-Framefor Single Frequency Network (sfn) Synchronization. TS 101 191, January 1998.

  63. Stott (J.H.). The dvb Terrestrial (dvb-t) Specification and its Implementation in a Practical Modem.International Broadcasting Convention. September 1996, pp. 255–260.

  64. Morello (A.), Blanchietti (G.), Benzi (C.), Tabone (M), Performance Assessment of a dvb-t Television System.Proceedings of 20th International Television Symposium. Montreux, June 1997.

  65. Weck (C.), Schramm (R.), Receiving dvb-t: Results of Field Trials and Coverage Considerations.Proceedings of 20th International Television Symposium. Montreux. June 1997.

  66. http://www.dvb.org

  67. http:/lwww.dtg.org.uk/news/archive/sum_9909.htm

  68. etsi. Broadband Radio Access Networks (bran); Hiperlan type 2; Physical (phy) Layer.Technical Specification etsi ts 101 475. V1.2.2 (2001–02).

  69. Khun-Jush (J.), Schramm (P.), Wachsmann (U.), Wenger (F.), Structure and Performance of hiperlan/2 Physical Layer.Proceedings of the ieee Vehicular Technology Conference (VTC ‘99-Fall). Amsterdam, September 1999.

  70. Doufexi (A.), Butler (M.), Armour (S.), Karlsson (P.), Nix (A.), Bull (D.), Simulated Performance of the hiperlan/2 Physical Layer with Real Statistical Channels.Second International Conference on 3G Mobile Communication Technologies. London, UK, 26–28 March 2001.

  71. Doufexi (A.), Armour (S.), Butler (S.), Nix (A.), Bull (D.), Mcgeehan (J.), Karlsson (P.), A Comparison of the hiperlan/2 and ieee 802.11a Wireless LAN Standards,ieee Communications Magazine.40, n° 5, May 2002, pp. 172–180.

    Article  Google Scholar 

  72. Doufexi (A.), Armour (S.), Karlsson (P.), Nix (A.), Bull (D.), A Comparison of hiperlan/2 and ieee 802.11a. Symposium on Communications and Vehicular Technology, SCVT-200. Leuven, Belgium, 19 October 2000, pp. 14–20.

  73. Doufexi (A.), Armour (S.), Butler (M.), Nix (A.), Bull (D.), A Study of the Performance of hiperlan/2 and ieee 802.11a Physical Layers.Proceedings of the ieee Vehicular Technology Conference (vtc ’99 Spring). Houston, Texas, May 16–20, 1999, pp. 668–672.

  74. Van Nee (R.), Awater (G.), Morikura (M.), Takanashi (H.), Webster (M.), Halford (K.W.), New High-Rate Wireless LAN Standards,IEEE Communications Magazine, December 1999.

  75. ieee. Part 11: Wireless LAN Medium Access Control (mac) and Physical Layer (phy) Specifications: Highspeed Physical Layer in the 5 GHz Band.ieee Standard 802.11a-1999.

  76. Bingham (J. A. C.), Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come.ieee Communications Magazine. May 1990.

  77. Giannakis (G. B.), Filterbanks for Blind Channel Identification and Equalization.ieee Signal Processing Letters. June 97,4.

  78. Scaglione (A.), Giannakis (G. B.), Barbarossa (S.), Redundant Filterbank Precoders and Equalizers, Part II: Blind Channel Estimation, Synchronization, and Direct Equalization,ieee Transaction on Signal Processing. July 1999,47.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Siala.

Additional information

This paper is essentially the second part of the habilitation dissertation of M. SIALA withheld on May 14, 2002 at sup’com, Tunisia, for obtaining the « Habilitation àDiriger des Recherches ».

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siala, M. Maximuma posteriori semi-blind channel estimation for ofdm systems operating on highly frequency and time selective channels. Ann. Télécommun. 57, 873–924 (2002). https://doi.org/10.1007/BF03005253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03005253

Key words

Mots clés

Navigation