Advertisement

Paläontologische Zeitschrift

, Volume 77, Issue 1, pp 173–193 | Cite as

Die Acritarcha: ihre Klassifikation, Morphologie, Ultrastruktur und paläoökologische/paläogeographische Verbreitung

  • Michael Montenari
  • Ursula Leppig
Article

Kurzfassung

Die Acritarchen bilden die ältesten marinen Organismen mit mutmaßlich eukaryotischer Zellorganisation. Sie besitzen für die Zeiträume des Präkambriums und des tieferen Paläozoikums hohen biostratigraphischen Wert und eine große paläoökologische und paläobiogeographische Aussagekraft. In der vorliegenden Studie wird eine kurze Übersicht über mögliche biologische Beziehungen der Acritarchen gegeben und ihre wichtigsten morphologischen Merkmale sowie ihre paläoökologische und paläobiogeographische Verbreitung dargestellt und diskutiert. Für die Entstehung der Eukaryoten werden neben der Seriellen Endosymbionten Theorie (SET) die Archaezoa-Theorie, die Fusions-Hypothese und die Wasserstoff-Hypothese komprimiert vorgestellt und vergleichend diskutiert.

Markante Akzelerationsunterschiede proterozoischer Acritarchen (negative Akzeleration der Vesikeldurchmesser unter gleichzeitiger positiver Akzeleration der Diversität) werden beschrieben und anhand der Prinzipien der SET als Hinweise auf bedeutende Reorganisationen der Zellkompartimentierung interpretiert.

Schlüsselwörter

Acritarcha biologische Beziehungen Serielle Endosymbionten Theorie Archaezoa-Theorie Fusions-Hypothese Wasserstoff-Hypothese evolutive Akzeleration Zellkompartimentierung 

The Acritarcha: their Classification, morphology, ultrastructure and palaeoecological/palaeogeographical distribution

Abstract

The acritarchs are considered to form the oldest marine organisms with an eukaryotic cell Organization. They are of great biostratigraphic, palaeoecological and palaeobiogeographic importance for the Precambrian and Early Palaeozoic. The present study provides a survey of their possible biological affinities. The main morphological characteristics of the acritarchs and their palaeogeographic and palaeoecological distribution are described and evaluated. Regarding the gene-sis of eukaryotes, the serial endosymbiosis theory (SET), the archaezoa theory, the fusion hypothesis and the hydrogen hypothesis are briefly described, compared and discussed.

Significant differences of the evolutionary acceleration of the proterozoic acritarchs (negative acceleration of vesicle diameters and simultaneous positive acceleration of diversity) are described and interpreted in the light of the SET as an evidence for major reorganizations of the cell compartments.

Keywords

Acritarcha biological affinities serial endosymbiosis theory archaezoa theory fusion hypothesis hydrogen hypothesis evolutionary acceleration cell compartments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Al-Almeri, T.K. 1983. Acid-resistant microfossils used in the determination of Palaeozoic palaeoenvironments in Lybia. — Palaeogeography, Palaeoclimatology, Palaeoecology44: 103–116.Google Scholar
  2. Albani, R.;Lelkes-Felvary, G. &Tongiorgi, M. 1985. First record of Ordovician (Upper Arenigian, Acritarchs) beds in Bakony Mts., Hungarya. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen170: 45–65.Google Scholar
  3. Amard, B. 1997.Chuariapendjariensis n. sp., acritarche du bassin des Volta, Benin et Burkina-Faso, Afrique de l’Ouest: un ta-xon nouveau du Cambrien inferieur. — Academie des Sciences, Paris, Earth and Planetary Sciences, Compte Rendu324: 477–483.Google Scholar
  4. Arnold, CG. 1987. Die Entstehung der eukaryontischen Zelle (Eucyte). — In:Siewing, R., Hrsg., Evolution: 181–198, Stuttgart (G. Fischer).Google Scholar
  5. Bloeser, B.;Schopf, J.W.;Horodyski, R J. &Breed, W.J. 1977. Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona. — Science195: 676–679.Google Scholar
  6. Bosence, D.W.J. &Allison, P.A. 1995. Marine Palaeoenvironmental Analysis from Fossils. — Geological Society of London, Special Publication83: 1–272.Google Scholar
  7. Brocke, R. 1992. First results of palynological investigation of the Lower Arenig. — VIII International Palynological Congress, Aix-en-Provence Program and Abstracts: 18.Google Scholar
  8. Burmann, G. 1970. Weitere organische Mikrofossilien aus dem unteren Ordovizium. — Paläontologische Abhandlungen (B)3: 289–332.Google Scholar
  9. Butterfield, N.J.;Knoll, A.H. &Sweet, K. 1988. Exceptional preservation of fossils in an Upper Proterozoic shale. — Nature334: 424–427.Google Scholar
  10. Cavalier-Smith, T. 1987a. The origin of eukaryote and archae-bacterial cells. — Annals of the New York Academy of Sciences503: 7–54.Google Scholar
  11. Cavalier-Smith, T. 1987b. Eukaryotes with no mitochondria. — Nature326: 332–333.Google Scholar
  12. Cavalier-Smith, T. &Chao, E.E. 1996. Molecular phylogeny of the free-living archaezoaTrempomonas agilis and the nature of the first eukaryote. — Journal of Molecular Evolution43: 551–562.Google Scholar
  13. Châteauneuf, J.J. &Reyre, Y. 1975. Eléments de Palynologie: Applications Géologiques. — 345 S., Genève (Laboratoire de Paléontologie de l’Université de Genève).Google Scholar
  14. Clark, C.G. &Roger, A.J. 1995. Direct evidence for secondary loss of mitochondria inEntamoeba histologica. — National Academy of Science of the United States of America, Proceedings92: 6518–6521.Google Scholar
  15. Colbath G.K. 1990a. Palaeobiogeography of Middle Palaeozoic organic-walled phytoplankton. — In:McKerrow, W.S. &Scotese, C.R., Hrsg., Palaeozoic Palaeogeography and Bio-geography, Geological Society of London, Memoir12: 207–213.Google Scholar
  16. Colbath, G.K. 1990b. Devonian (Givetian-Frasnian) organic-walled phytoplancton from the Limestone Billy Hills reef complex, Canning Basin, Western Australia. — Palaeontographica (B)217: 87–145.Google Scholar
  17. Colbath, G.K. &Grenfell, H.R. 1995. Review of biological affinities of Palaeozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”). — Review of Palaeobotany and Palynology86: 287–314.Google Scholar
  18. Cramer, F.H. 1968. Silurian palynologie microfossils and paleolatitudes. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1968: 591–597.Google Scholar
  19. Cramer, F.H. 1969. Possible implications for Silurian paleogeography from phytoplancton assemblages of the Rose Hill and Tuscarona Formations of Pennsylvania. — Journal of Paleontology43: 485–491.Google Scholar
  20. Cramer, F.H. 1970a. Distribution of selected Silurian acritarchs: an account of the palynostratigraphy and paleogeography of selected Silurian acritarch taxa. — Revista Española de Micro-paleontologia, Numero Extraordinario1: 1–203.Google Scholar
  21. Cramer, F.H. 1970b. Middle Silurian continental movements estimated from phytoplankton facies transgression. — Earth and Planetary Science Letters10: 87–93.Google Scholar
  22. Cramer, F.H. 1971. Implications from middle Paleozoic palynofacies transgressions for the rate of crustal movement, especially during the Wenlockian. — Suplemento dos Anais da Academia Brasileira de Ciencias43: 51–66.Google Scholar
  23. Cramer, F.H. &Diez, M.C.R. 1970. Acritarchs from the Lower Silurian Neahga Formation, Niagara Peninsula, North America. — Canadian Journal of Earth Sciences7: 1077–1086.Google Scholar
  24. Cramer, F.H. &Diez, M.C.R. 1972. Early Paleozoic palynomorph provinces and their spatial arrangement: acritarchs. — Palaeontographica (B)138: 107–180.Google Scholar
  25. Cramer, F.H. &Diez, M.C.R. 1974a. Early Paleozoic palynomorph provinces and paleoclimate. — Society of Economic Paleontologists and Mineralogists, Special Publication21: 177–188.Google Scholar
  26. Cramer, F.H. &Diez, M.C.R. 1974b. Silurian acritarchs: distribution and trends. — Review of Palaeobotany and Palynology18: 137–154.Google Scholar
  27. Cramer, F.H. &Diez, M.C.R. 1977. Lower Paleozoic phytoplankton from North Africa and adjacent regions — general survey. — Annales des Mines et de la Geologie28: 21–34.Google Scholar
  28. Cramer, F.H.;Diez, C.R. &Cuerda, A.J. 1974. Late Silurian chitinozoans and acritarchs from Cochabama, Bolivia. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1974: 1–12.Google Scholar
  29. Dean, W.T. &Martin, F. 1978. Lower Ordovician acritarchs and trilobites from Bell Island, Eastern Newfoundland. — Geological Survey of Canada, Bulletin284: 1–35.Google Scholar
  30. Dean, W.T. &Martin, F. 1992. Ordovician biostratigraphic correlation in southern Turkey. — In:Webby, B.D. &Laurie, J.R., Hrsg., Global Perspektives on Ordovician Geology: 195–203, Rotterdam (Balkema).Google Scholar
  31. Deunff, J. 1961. Un microplancton à Hystrichosphères dans le Tramadoc du Sahara. — Revue de Micropaléontologie4: 37–52.Google Scholar
  32. Diver, W.L. &Peat, C.J. 1979. On the interpretation and Classification of Precambrian organic-walled microfossils. — Geology7: 401–404.Google Scholar
  33. Doolittle, W.F. 1996. Some aspects of the biology of cells and their possible evolutionary significance. — Symposium of the Society for General Microbiology54: 1–21.Google Scholar
  34. Dorning, K. 1981a. Silurian acritarch distribution in the Ludlovian shelf sea of South Wales and the Welsh Borderland. — In:Neale, J.W. &Brasier, M.D., Hrsg., Microfossils from Re-cent and fossil shelf seas: 31–36, Chichester (Ellis Horwood).Google Scholar
  35. Dorning, K. 1981b. Silurian acritarchs from the type Wenlock and Ludlow of Shropshire, England. — Review of Palaeobotany and Palynology34: 175–203.Google Scholar
  36. Dorning, K. 1987. The organic palaeontology of Palaeozoic carbonate environments. — In:Hart, M.B., Hrsg., Micropalaeontology of Carbonate Environments: 256–265, Chichester (Ellis Horwood).Google Scholar
  37. Dorning, K. &Bell, D.G. 1987. The Silurian carbonate shelf microflora: acritarch distribution in the Much Wenlock Limestone. — In:Hart, M.B., Hrsg., Micropalaeontology of Carbonate Environments: 266–287, Chichester (Ellis Horwood).Google Scholar
  38. Downie, C. 1973. Observations on the nature of the acritarchs. — Palaeontology16: 239–259.Google Scholar
  39. Downie, C. 1984. Acritarchs in British stratigraphy. — Geological Society of London Special Reports17: 1–26.Google Scholar
  40. Downie C;Evitt, W.R. &Sarjeant, W.A.S. 1963. Dinoflagellates, hystrichospheres, and the Classification of the acritarchs. — Stanford University Publications, Geological Sciences7: 1–16.Google Scholar
  41. Dufka, P. 1990. Palynomorphs in the Llandovery black shale sequence of the Prague Basin (Barrandian area, Bohemia). — Casopsis pro mineralogii a geologii35: 15–31.Google Scholar
  42. Eisenack, A;Cramer, F.H. &Diez-Rodriguez, M.C.R. 1973. Katalog der fossilen Dinoflagellaten, Hystrichosphären und verwandten Mikrofossilien, Bd. 3 Acritarcha (1). — 1104 S., Stuttgart (E. Schweizerbart).Google Scholar
  43. Eiserhardt, K.H. 1992. Die Acritarcha des Öjlemyrflintes. — Palaeontographica (B)226: 1–132.Google Scholar
  44. Elaouad-Debbaj, Z. 1984. Acritarchs et chitinozoaires de rArenig-Llamvirn de 1’Anti-Atlas (Maroc). — Review of Pa-laeobotany and Palynology43: 67–88.Google Scholar
  45. Ellegaard, M. 2000. Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark. — Review of Palaeobotany and Palynology109: 65–81.Google Scholar
  46. Evitt, W.R. 1963a. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. — National Academy of Science of the United States of America, Proceedings49: 158–164.Google Scholar
  47. Evitt, W.R. 1963b. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. — National Academy of Science of the United States of America, Proceedings49: 298–302.Google Scholar
  48. Ewetz, C.E. 1933. Einige neue Funde in der Visingsöformation. — Geologiska Föreningens i Stockholm Förhandlingar55: 506–518.Google Scholar
  49. Fairchild, T.R;Barbour, A.P. &Haralyi, N.L.E. 1978. Microfossils in the “Eopaleozoic” Jacadigo Group at Urucum, Mato Grosso, Southwest Brazil. — Boletim Instituto de Geosciencias da Universidade de Sao Paulo9: 74–79.Google Scholar
  50. Fensome, R.A.;Williams, G.L.;Barss, M. S.;Freeman, J. M. &Hill, J. M. 1990. Acritarchs and fossil prasinophytes: An index to genera, species and infraspecific taxa. — American Association of Stratigraphic Palynologists Contribution Series25: 1–771.Google Scholar
  51. Fortey, R.a. &Mellish, C.J.T. 1992. Are some fossils better than others for inferring palaeogeography? The early Ordovician of the North Atlantic region as an example. — Terra Nova4: 210–216.Google Scholar
  52. Fowler, G.M. 1984. Organic Geochemistry of Precarboniferous Sedimentary Organic Matter. — 218 S., Newcastle upon Tyne (Doktorarbeit).Google Scholar
  53. Fowler, G.M. 1992. The influence ofGloeocapsomorpha prisca on the organic geochemistry of oils and organic-richs rocks of Late Ordovician age from Canada. — In:Schidlowski, M.;Golubic, S.;Kimberley, M.M.;McKirdy, D.M. &Trudinger, P.A., Hrsg., Early Organic Evolution: 336–356, Berlin (Springer).Google Scholar
  54. Ghavidel-Syooki, M. 1992. First Ordovician palynological record from Alborz Mountain Range, Northern Iran. — VIII International Palynological Congress, Aix-en-Provence Program and Abstracts: 52.Google Scholar
  55. Gooday, G.W. 1981. Biogenesis of sporopollenin in fungal cell walls. — In:Turian, G. &Holl, H.R., Hrsg., The Fungal Spore, Morphogenetic Controls: 487–505, New York (Academic Press).Google Scholar
  56. Gray, J. &Boucot, A.J. 1972. Palynological evidence bearing on the Ordovician-Silurian paraconformity in Ohio. — Geological Society of America, Bulletin83: 1299–1314.Google Scholar
  57. Gray, J. &Boucot, A.J. 1989. IsMoyeria a Euglenoid? — Lethaia22: 447–456.Google Scholar
  58. Gupta, R.S. &Golding, G.B. 1996. The origin of the eukaryotic cell. — Trends in Biochemical Sciences21: 166–171.Google Scholar
  59. Guttierrez, M.J.C. &Rabano, I. 1987. Paleobiogeographical aspects of the Ordovician mediterranean faunas. — Geogazeta2: 24–26.Google Scholar
  60. Hutton, A.C. 1987. Petrographic Classification of oil shales. — International Journal of Coal Geology8: 203–231.Google Scholar
  61. Jacobson, S.R. 1979. Acritarchs as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky, Ohio and New York. — Journal of Paleontology53: 1197–1212.Google Scholar
  62. Jardine, S.;Combaz, A.;Magloire, L. &Vachey, G. 1974. Distribution stratigraphique des acritarchs dans le Paleozoique du Sahara Algerien. — Review of Palaeobotany and Palynology18: 99–129.Google Scholar
  63. Jux, U. 1968. Über den Feinbau der Wandung beiTasmanites Newton. — Palaeontographica (B)124: 112–124.Google Scholar
  64. Jux, U. 1969a. Über den Feinbau der Zystenwandung vonPachysphaera marshalliae Parke, 1966. — Palaeontographica (B)125: 104–111.Google Scholar
  65. Jux, U. 1969b. Über den Feinbau der Zystenwandung vonHalosphaera Schmitz, 1878. — Palaeontographica (B)128: 48–55.Google Scholar
  66. Jux, U. 1971. Über den Feinbau einiger paläozoischer Baltisphaer-idiaceen. — Palaeontographica (B)136: 115–128.Google Scholar
  67. Jux, U. 1975. Phytoplankton aus dem mittleren Oberdevon (Neh-den-Stufe) des südwestlichen Bergischen Landes (Rheinisches Schiefergebirge). — Palaeontographica (B)149: 113–138.Google Scholar
  68. Jux, U. 1977. Über die Wandstrukturen sphaeromorpher Acritar-chen:Tasmanites Newton,Tapajonites Sommer &van Boekel,Chuaria Walcott. — Palaeontographica (B)160: 1–16.Google Scholar
  69. Keeling, P.W. &Doolittle, W.F. 1997. Evidence that eukaryotic triosephosphate isomerase is alpha-proteobacterial origin. — National Academy of Science of the United States of America, Proceedings94: 1270–1275.Google Scholar
  70. Kjellstrøm, G. 1968. Remarks on the chemistry and ultrastructure of the cell wall of some Palaeozoic leiospheres. — Geologiska Föreningens i Stockholm Förhandlingar90: 118–221.Google Scholar
  71. Knoll, A.H. &Butterfield, N.J. 1989. Palaeontology; new window on Proterozoic life. — Nature337: 602–603.Google Scholar
  72. Knoll, A.H. &Calder, S. 1983. Microbiotas of the Late Precambrian Ryssö Formation, Nordaustlandet, Svalbard. — Palaeontology26: 467–496.Google Scholar
  73. Knoll, A.H.;Sweet, K. &Mark, J. 1991. Paleobiology of a Neoproterozoic Tidal Flat/Lagoonal Complex: the Draken Conglomerate Formation, Spitzbergen. — Journal of Paleontology65: 531–570.Google Scholar
  74. Knoll, A.H. &Vidal, G. 1980. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. — Geologiska Föreningens i Stockholm Förhandlingar102: 207–211.Google Scholar
  75. Knoll, A.H. &Walter, W.R. 1992. Latest Proterozoic stratigraphy and Earth history. — Nature356: 673–677.Google Scholar
  76. Kokinos, J.P. &Anderson, D.M. 1995. Morphological develop-ment of resting cysts in cultures of the marine dinoflagellateLingulodinium polyedrum (=L. machaerophorum). — Palynology19: 143–166.Google Scholar
  77. Lake, J.A. &Rivera, M.C. 1994. Was the nucleus the first endosymbiont? — National Academy of Science of the United States of America, Proceedings91: 2880–2882.Google Scholar
  78. Le Hérissé, A. 1984. Microplancton à paroi organique du Silurien de Gotland (Suède): observations au microscope electronique de structures de désenkystement. — Review of Palaeobotany and Palynology43: 217–236.Google Scholar
  79. Le Hérissé, A. 1989. Acritarches et kystes d’algues prasinophycées du Silurien de Gotland, Suede. — Palaeontographica Italica76: 57–302.Google Scholar
  80. Le Hérissé, A. &Gourvennec, R. 1992. Paleobiology of Silurian — Early Devonian acritarchs. — VIII. International Palynological Congress, Aix-en-Provence, Program and Abstracts: 83.Google Scholar
  81. Lehninger, A.L.;Nelson, D.L. &Cox, M.M. 1994. Prinzipien der Biochemie. — 1223 S., Heidelberg (Spektrum Akademischer Verlag).Google Scholar
  82. Li, J. 1987. Ordovician acritarchs from the Meitan Formation of Guizhou Province, south-west China. — Palaeontology30: 613–634.Google Scholar
  83. Lindberg, D.R.;Lipps, J.H. &Hazel, J.E. 1993. Micropalaeontology. — In:Lipps, J.H., Hrsg., Fossil Prokaryotes and Protists: 31–50, Boston (Blackwell).Google Scholar
  84. Lister, T.R. 1970. The acritarchs and Chitinozoa from the Wenlock and Ludlow Series of the Ludlow and Millichope areas, Shropshire. Part 1. — Palaeontographical Society Monograph124: 1–100.Google Scholar
  85. Littke, R.;Baker, D.R. &Leythaeuser, D. 1988. Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. — Organic Geochemistry13: 549–559.Google Scholar
  86. Loeblich, A.R. 1970. Morphology, ultrastructure and distribution of Paleozoic acritarchs. — Proceedings of the North American Paleontological Convention, September 1969 G33: 705–788.Google Scholar
  87. Loh, H.;Prauss, M. &Riegel, W. (1986): Primary production, maceral formation and carbonate species in the Posidonia Shale of NW Germany. — Mitteilungen des Geologisch-Paläontologischen Instituts der Universität Hamburg60: 397–421.Google Scholar
  88. Margulis, L. 1981. Symbiosis in cell evolution: life and its environment on the early earth. — 419 S., San Francisco (Freeman).Google Scholar
  89. Margulis, L. 1993. Symbiosis in cell evolution: microbial communities in the Archean and Proterozoic eons. — 452 S., New York (Freeman).Google Scholar
  90. Martin, F. &Rickard, B. 1979. Acritarches, Chitinozoaires et Graptolithes Ordoviciens et Siluriens de la Vellée de la Senette (Massif du Brabant, Belgique). — Annales de la Societe de Beige102: 189–197.Google Scholar
  91. Martin, W. &Müller, M. 1998. The hydrogen hypothesis for the first eukaryote. — Nature392: 37–41.Google Scholar
  92. Martin, F. &Kjellstrøm, G. 1973. Ultrastructural study of some Ordovician acritarchs from Gotland, Sweden. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1973 (1): 44–54.Google Scholar
  93. Mendelson, C.V. 1993. Acritarchs and prasinophytes. — In:Lipps, J.H., Hrsg., Fossil Prokaryotes and Protists: 77–104, Boston (Blackwell).Google Scholar
  94. Mette, W. 1989. Acritarchs from the Lower Paleozoic rocks of the Western Sierra Morena, SW Spain and biostratigraphical results. — Geologica et Palaeontologica23: 1–19.Google Scholar
  95. Miller, M.A. 1987. A diagnostic excystment suture in the Silurian acritarchCircinatisphaera aenigma gen. et sp. nov. — Palynology11: 97–104.Google Scholar
  96. Miller, M.A. &Williams, G.L. 1988.Velatasphaera hudsonii gen. et sp. nov., an Ordovician acritarch from Hudson Strait, Northwest Territories, Canada. — Palynology12: 121–127.Google Scholar
  97. Miller, M.A. &Wood, G.D. 1982. Trochospiral suture: a new excystment structure in the Lower Paleozoic AcritarchaLeiofusa tumida Downie 1959, andEupokilofusa cantabrica (Cramer) Cramer 1971. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1982 (9): 547–552.Google Scholar
  98. Molyneux, S.G. 1987. Acritarchs and chitinozoans from the Arenig Series of south-western Wales. — Bulletin of the British Museum of Natural History (Geology)41: 309–364.Google Scholar
  99. Molyneux, S.G. &Rushton, A.W.A. 1988. The age of the Watch Hill Grits (Ordovician), English Lake District: structural and palaeogeographical implications. — Transactions of the Royal Society of Edinburgh, Earth Sciences79: 43–69.Google Scholar
  100. Müller, M. 1993. The hydrogenosome. — Journal of General Microbiology139: 2879–2889.Google Scholar
  101. Munnecke, A. &Servais, T. 1996. Scanning electron microscopy of polished, slightly etched surfaces: a method to observe palynomorphs in situ. — Palynology20: 163–176.Google Scholar
  102. Ottone, E.G.;Toro, B.A. &Waisfeld, B.G. 1992. Lower Ordovician Palynomorphs from the Acoite Formation, northwestern Argentinia. — Palynology16: 93–116.Google Scholar
  103. Parke, M. 1966. The genusPachysphaera (Prasinophyceae). — In:Barnes, H., Hrsg., Some contemporary Studies in Marine Science: 555–563, London (Allen & Unwin).Google Scholar
  104. Pflug, H.D. &Reitz, E. 1985. Earliest Phytoplancton of Eukaryotic Affinity. — Naturwissenschaften72: 656–657.Google Scholar
  105. Pflug, H.D. &Reitz, E. 1986. Evolutionary changes in the Proterozoic. — Lecture Notes in Earth Sciences8: 95–103.Google Scholar
  106. Pflug, H.D. &Reitz, E. 1988. Zur Evolution des eukaryotischen Phytoplanktons im Riphäikum — Neue Erkenntnisse aus der Belt Serie von Nordamerika. — Geologische Rundschau77: 417–427.Google Scholar
  107. Pflug, H.D. &Reitz, E. 1992. Palynostratigraphy in Phanerozoic and Precambrian Metamorphic Rocks. — In:Schidlowski, M.;Golubic, S.;Kimberley, M.M.;McKirdy, D.M. &Trudinger, P.A., Hrsg., Early Organic Evolution: Implications for Mineral and Energy Resources: 509–518, Berlin (Springer).Google Scholar
  108. Pirozynski, K.A. 1976. Fungal spores in fossil record. — Biological Memoirs1: 104–120.Google Scholar
  109. Rauscher, R. 1973. Recherches micropaléontologiques et strati-graphiques dans l’Ordovicien et le Silurien en France. Étude des acritarchs, des chitinozoaires et des spores. — Sciences Géologiques Université Louis Pasteur de Strasbourg, Mémoire38: 1–224.Google Scholar
  110. Reaugh, A.B. 1978. A new excystment mechanism in the Silurian acritarchDiexallophasis of Virginia. — Palaeontology21: 869–872.Google Scholar
  111. Reitz, E. 1991. Palynologische Untersuchungen an Metasediment-en: Methodik und Ergebnisse. — 76 S., München (Habilitationsschrift).Google Scholar
  112. Reitz, E. &Heuse, T. 1994. Palynofazies im Oberordovizium des Saxothuringikums. — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1994 (6): 348–360.Google Scholar
  113. Reitz, E. &Höll, R. 1992. Palynological evidence for lower Ordovician rocks (Tremadoc and Arenig) in the Northern Greywacke Zone (Eastern Alps). — Terra Nova4: 198–207.Google Scholar
  114. Reitz, E.;Anderle, H.J. &Winkelmann, M. 1995. Ein erster Nachweis von Unterordovizium (Arenig) am Südrand des Rheinischen Schiefergebirges im Vordertaunus: Der Bierstadt-Phyllit (Bl. 5915 Wiesbaden). — Geologisches Jahrbuch Hessen123: 25–38.Google Scholar
  115. Richardson, J.B. &Rasul, S.M. 1990. Palynofacies in a Late Silurian regressive sequence in the Welsh Borderland and Wales. — Journal of the Geological Society London147: 675–686.Google Scholar
  116. Schönheit, P. &Schäfer, T. 1995. Metabolism of hyperther-mophiles. — World Journal of Microbiology and Biotechnology11: 26–57.Google Scholar
  117. Schopf, J.W. &Klein, C. 1992. The Proterozoic Biosphere: A Multidisciplinary Study. — 1348 S., New York (Columbia University Press).Google Scholar
  118. Servais, T. 1996. Some considerations on acritarch Classification. — Review of Palaeobotany and Palynology93: 9–22.Google Scholar
  119. Servais, T. &Eiserhardt, K.H. 1995. A discussion and proposals concerning the Lower Paleozoic „galeate“ acritarch plexus. — Palynology19: 191–210.Google Scholar
  120. Servais, T. &Katzung, G. 1993. Acritarch dating of Ordovician Sediments of the Island of Rügen (NE-Germany). — Neues Jahrbuch für Geologie und Paläontologie, Monatshefte1993 (12): 713–723.Google Scholar
  121. Servais, T.;Montenari, M. &Stricanne, L. 2001. Acritarchs at the Cambro-Ordovician boundary: biostratigraphy or ecophenotypism? — Palaeontological Newsletter48: 30–31.Google Scholar
  122. Servais, T.;Stricanne, L.;Montenari, M. &Pross, J. im Druck. Ecophenotypism of galeate acritarchs („pre-dinoflag-ellates“) at the Cambrian-Ordovician boundary in the algerian Sahara. — Palaeontology.Google Scholar
  123. Servais, T.;Brocke, R.;Fatka, O.;Le Hérissé, A. &Molyneux, S.G. 1996. Value and Meaning of the Term Acritarch. — Acta Universitatis Carolinae Geologica40: 631–643.Google Scholar
  124. Sherwood, N.R. &Cook, A.c. 1986. Organic matter in the Toolebuc Formation. — Geological Society of Australia, Special Publication12: 255–265.Google Scholar
  125. Sitte, P.;Ziegler, H.;Ehrendorf, F. &Bresinsky, A. 1991. Lehrbuch der Botanik für Hochschulen. — 1030 S., Stuttgart (G. Fischer).Google Scholar
  126. Smith, J.E. &Berry, D.R. 1974. An Introduction to Biochemistry of Fungal Development. — 326 S., London (Academic Press).Google Scholar
  127. Staplin, F.L. 1961. Reef-controlled distribution of Devonian microplancton in Alberta. — Palaeontology4: 392–424.Google Scholar
  128. Steiner, M. 1996.Chuaria circularis Walcott 1899 — “Mega-sphaeromorph Acritarch” or Prokaryotic Colony? — Acta Universitatis Carolinae Geologica40: 645–665.Google Scholar
  129. Stricanne, L. &Servais, T. 2002. A Statistical approach to Classification of the Cambro-Ordovician galeate acritarch plexus. — Review of Palaeobotany and Palynology118: 239–259.Google Scholar
  130. Strother, P.K. 1990. The construction of models to produce distributions of simple cell morphologies. — In:Ponnamperuma, C. &Eirich, F.R., Hrsg., Prebiological self organiziation of matter: 280, Hampton (Deerpak Publishing).Google Scholar
  131. Strother, P.K. 1994. Sedimentation of palynomorphs in rocks of pre-Devonian age. — In:Traverse, A., Hrsg., Sedimentation of Organic Particles: 489–502, Cambridge (Cambridge University Press).Google Scholar
  132. Strother, P.K. 1996. Chapter 5 Acritarchs. — In:Jansonius, J. &McGregor, D.C., Hrsg., Palynology: principles and applications1: 81–106, Salt Lake City (AASP Foundation).Google Scholar
  133. Strother, P.k. &Tobin, K. 1987. Observation on the genusHuroniospora Barghoorn: Implications for the paleoecology of the Gunflint microbiota. — Precambrian Research36: 323–333.Google Scholar
  134. Talyzina, N.M. &Moczydlowska, M. 2000. Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. — Review of Palaeobotany and Palynology112: 1–21.Google Scholar
  135. Tappan, H. 1980. The Paleobiology of Plant Protists. — 1028 S., San Francisco (Freeman).Google Scholar
  136. Taylor, F.J.R. 1974. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. — Taxon23: 229–258.Google Scholar
  137. Turner, R.E. &Wadge, A.J. 1979. Acritarch dating of Arenig volcanism in the Lake District. — Proceedings of the York-shire Geological Society42: 405–414.Google Scholar
  138. Turon, J.L. 1984. Le palynoplancton dans l’environnement actuel de L’Atlantique Nord-Oriental. Evolution climatique et hydrologique depuis le dernier maximum glaciaire. — Memoires de I’Institut de Geologie du Bassin d’Aquitaine, Université de Bordeaux17: 1–313.Google Scholar
  139. Tyson, R.V. 1995. Sedimentary organic matter. Organic facies and palynofacies. — 615 S., London (Chapman & Hall).Google Scholar
  140. Van Waveren, I.M. &Marcus, N.H. 1993. Morphology of recent copepod egg envelopes from Turkey Point, Gulf of Mexiko, and their implications for acritarch affinity. — In:Molyneux, S.G. &Dorning, K.J., Hrsg., Contributions to acritarch and chitinozoan research, Special papers in Palaeontology48: 111–124.Google Scholar
  141. Vavrdová, M. 1972. Acritarchs from Klabava Shale (Arenig). — Věstnik Českého Geologického Ústavu47: 79–86.Google Scholar
  142. Vavrdová, M. 1974. Geographical differentiation of Ordovician acritarch assemblages in Europe. — Review of Palaeobotany and Palynology18: 171–175.Google Scholar
  143. Vavrdová, M. 1986. New genera of acritarchs from the Bohemian Ordovician. — Casopsis pro Mineralogii a Geologii31: 349–360.Google Scholar
  144. Vavrdová, M. 1990. Early Ordovician acritarchs from the locality Myto near Rokycany (Late Arenig, Czechoslovakia). — Casopsis pro Mineralogii a Geologii35: 239–250.Google Scholar
  145. Vavrdová, M. 1997. Early Ordovician provincialism in acritarch distribution. — Review of Palaeobotany and Palynology98: 33–40.Google Scholar
  146. Vidal, G. 1976. Late Precambrian microfossils from the Visingsö Beds in southern Sweden. — Fossils and Strata9: 1–57.Google Scholar
  147. Vidal, G. 1979. Acritarchs from the upper Proterozoic and Lower Cambrian of East Greenland. — Grønlands Geologiske Undersøgelse Bulletin134: 1–55.Google Scholar
  148. Vidal, G. 1981. Micropalaeontology and biostratigraphy of the Upper Proterozoic and Lower Cambrian sequences in East Finnmark, northern Norway. — Norges Geologiske Undersokelse Bulletin362: 1–53.Google Scholar
  149. Vidal, G. 1984. The oldest plankton. — Scientific American250: 48–57.Google Scholar
  150. Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. — Palaeontology33: 287–298.Google Scholar
  151. Vidal, G. &Knoll, A.h. 1983. Proterozoic plankton. — Geological Society of America, Memoir161: 265–277.Google Scholar
  152. Wall, D. 1965. Microplankton, pollen, and spores from the Lower Jurassic in Britain. — Micropalaeontology11: 151–190.Google Scholar
  153. Wall, D.;Dale, B. &Harada, K. 1973. Descriptions of new fossil dinoflagellates from the Late Quaternary of the Black Sea. — Micropaleontology19: 18–31.Google Scholar
  154. Westphal, H. &Munnecke, A. 1997. Mechanical compaction versus early cementation in fine-grained limestones; differentiation by the preservation of organic microfossils. — Sedimentary Geology112: 33–42.Google Scholar
  155. Williams, D.B. &Sarjeant, W.A.S. 1967. Organic-walled microfossils as depth and shoreline indicators. — Marine Geology5: 389–412.Google Scholar
  156. Woese, CR. 1988. Archäbakterien — Zeugen aus der Urzeit des Lebens. — In:Mayr, E., Hrsg., Evolution: Die Entwicklung von den ersten Lebensspuren bis zum Menschen: 122–136, Heidelberg (Spektrum Akademischer Verlag).Google Scholar
  157. Wood, G.D. 1984. A stratigraphic, paleoecologic, and paleobio-geographic review of the acritarchsUmbellasphaeridium deflandrei andUmbellasphaeridium saharicum. — In:Sutherland, P.K. &Manger, W.L., Hrsg., Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère, 2. Biostratigraphy, Compte Rendu: 191–211, Carbondale and Edwardsville (Southern Illinois University Press).Google Scholar
  158. Yuan, X.;Xiao, S.;Li, J.;Yin, L. &Cao, R. 2001. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian formation in Anhui, South China. — Precambrian Research107: 253–263.Google Scholar
  159. Zang, W. &Walter, M.R. 1989. Latest Proterozoic plankton from the Amadeus Basin in cental Australia. — Nature337: 642–645.Google Scholar
  160. Zillig, W. 1989. Did eukaryotes originate by a fusion event? — Endocytobiosis Cell Research6: 1–25.Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2003

Authors and Affiliations

  • Michael Montenari
    • 1
    • 2
  • Ursula Leppig
    • 3
  1. 1.Institut und Museum für Geologie und PaläontologieEberhard-Karls-UniversitätTübingenGermany
  2. 2.Paléontologie — Sciences de la Terre, UPRESA 8014 du Centre National de la Recherche Scientifique (CNRS), Laboratoire de Paléontologie et Paléogéographie du Paléozoi’queUniversite des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  3. 3.Geologisches InstitutAlbert-Ludwigs-UniversitätFreiburg i. Br.Germany

Personalised recommendations