Skip to main content
Log in

Techniques analytiques et numériques dans l’analyse des antennes microruban

Analytical and numerical techniques for the analysis of microstrip antennas

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Analyse

Cet article considère les antennesplaques de forme quelconque en microruban et leur analyse théorique. Il décrit les principaux modèles simplifiés utilisés jusqu’à maintenant, puis présente une méthode mathématique rigoureuse, qui fait usage des fonctions dyadiques de Green pour milieux stratifiés. Les noyaux des intégrales obtenues possèdent des singularités et un comportement divergent. Un procédé de calcul original permet leur intégration. L’antenneplaque est ensuite découpée en rectangles, sur lesquels les courants de surface sont déterminés par une méthode de moments. L’impédance d’entrée est calculée, puis comparée à des valeurs expérimentales.

Abstract

This paper deals with microstrip patch antennas of arbitrary shape, and techniques available for their analysis. It reviews the various approximate models utilized so far, and presents a rigorous mathematical approach, based on dyadic Green’s functions for stratified media. Integrals are obtained with integrands possessing both singularities and a divergent behaviour at infinity: a numerical technique was set up for their integration. The antenna patch is cut up in rectangles, over which the surface currents are evaluated by a moment’s method. The antenna’s input impedance is computed and compared with measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  1. Munson (R. E.. Conformed microstrip antennas and microstrip phased arrays.IEEE Trans. AP, USA (1974),22, pp. 74–78.

    Google Scholar 

  2. Mosig (J. R.). Les structures microruban: analyse au moyen des équations intégrales. Thèse de doctorat ès sciences techniques.Ecole Polytechnique Fédérale de Lausanne, Suisse (1984).

  3. Zürcher (J. F.). Réalisation de masques pour circuits en lignes microrubans à l’aide d’une calculatrice de table. IVesJournées Nationales Microondes, Lannion, France (1984), pp. 134–135.

  4. Besser (L.) etMarch (S.). Computerized microwave circuit layout and mask generation.14th European Microwave Conference, Liège, Belgique (1984).

  5. Gardiol (F.). Electromagnétisme. Vol. III duTraité d’Electricité de l’Ecole Polytechnique Fédérale de Lausanne. Georgi, Saint-Saphorin, Suisse (1977).

  6. Grieg (D. D., Engelmann (H. F.. Microstrip-a new transmission technique for the kilomegacycle range.Proc. IRE, USA (1952),40, pp. 1644–1650.

    Google Scholar 

  7. Assadourian (F., Rimai (E.. Simplified theory of microstrip transmission systems.Proc. IRE, USA (1952),40, pp. 1651–1657.

    Google Scholar 

  8. Lewin (L.). Radiation from discontinuities in strip-line.Proc. IEE, UK,107C, pp. 163–170.

  9. Easter (B., Roberts (R. J.. Radiation from halfwavelength open-circuit microstrip resonators.Electron. Letters, UK (1970),6, pp. 573–574.

    Google Scholar 

  10. Sobol (M.. Radiation conductance of open circuit microstrip.IEEE Trans. MTT, USA (1971),19, pp. 885–887.

    Google Scholar 

  11. Kompa (G.. Approximate calculation of radiation from open-ended microstrip lines.Electron. Letters, UK (1976),12, pp. 222–224.

    Google Scholar 

  12. Wood (C., Hall (P. S., James (J. R.. Radiation conductance of open circuit low dielectric constant microstrip.Electron. Letters, UK (1977),14, pp. 121–123.

    Google Scholar 

  13. James (J. R., Henderson (A.. High-frequency behaviour of microstrip open circuit termination.MOA, UK (1979),3, pp. 205–218.

    Google Scholar 

  14. Gogoi (A., Gupta (K. C.. Wiener-Hopf computation of edge admittances for microstrip patch radiators.Archiv Elek. Ubertragungstech., Allemagne (1982),36, 11/12, pp. 464–467.

    Google Scholar 

  15. Hammerstad (E. O., Bekkadal (F.. Microstrip Handbook.ELAB Report STF44 A74169, Université de Trondheim, Norvège (1975).

    Google Scholar 

  16. Deschamps (G. A.). Microstrip microwave antennas.Third USAF Symposium on Antennas, USA (1953).

  17. Sanford (G. G.. Conformai mapping phased array for aircraft tests with ATS-6.IEEE Trans. AP, USA (1978),26, pp. 642–646.

    Google Scholar 

  18. Sterzer (F., Paglione (R., Nowogrodzski (M.. Microwave apparatus for the treatment of cancer by hyperthermia.Microwave J., USA (1980),23, 1, pp. 39–44.

    Google Scholar 

  19. Carver (K. R.. Editeur, Proceedings of the workshop on printed circuit antenna technology,New Mexico State University, Las Cruces, USA (1979).

    Google Scholar 

  20. Chang (D. C.). Editeur, numéro spécial desIEEE Trans. AP, USA (1981),29, 1.

  21. Bahl (I. J., Bhartia (P.. Microstrip antennas. Artech House, Dedham.MA, USA (1980).

    Google Scholar 

  22. James (J. R., Hall (P. S., Wood (C.. Microstrip antenna theory and design.IEE Press, UK (1981).

    Google Scholar 

  23. McIlvenna (J., Kernweiss (N.. Modified circular microstrip antenna elements.Electron. Letters, UK (1979),15, pp. 207–208.

    Google Scholar 

  24. Carver (K. R., Coffey (E. L.. Theoretical investigations of the microstrip antenna. Rapport PT-00929.Phys. Sci. Lab., New Mexico State University, Las Cruces, NM, USA (1979).

    Google Scholar 

  25. Newman (E. H., Tulyathan (P.. Analysis of microstrip antennas using moment methods.IEEE Trans. AP, USA (1981),29, pp. 47–53.

    Google Scholar 

  26. Shen (L. C.. The elliptical microstrip antenna with circular polarization.IEEE Trans. AP, USA (1981),29, pp. 90–94.

    Google Scholar 

  27. Weinschel (H. D.). A cylindrical array of circularly polarized microstrip antennas.Dig. Int’l Symp. APS, Urbana, Ill., USA (1975), pp. 177–180.

  28. Schaubert (D. H., Farrar (F. G., Sindoris (A. R., Hayes (S. T.. Microstrip antennas with frequency agility and polarization diversity.IEEE Trans. AP, USA (1981),29, pp. 118–123.

    Google Scholar 

  29. Mosig (J. R., Gardiol (F.. A dynamical radiation model for microstrip structures. In Advances in Electronics and Electron Physics, édité par P. Hawkes.Academic Press, New York, USA (1982).

    Google Scholar 

  30. Dubost (G.. Flat radiating dipoles and applications to arrays.Research Studies Press (John Wiley), New York, (1981).

    Google Scholar 

  31. Lepeltier (P.), Citerne (J.). Dipôle électrique plan alimenté par couplage électromagnétique avec une ligne microruban d’excitation.JINA 84, Nice (1984).

  32. James (J. R., Hall (P. S., Wood (C., Henderson (A.. Some recent developments in microstrip antenna design.IEEE Trans. AP, USA (1981),29, pp. 124–128.

    Google Scholar 

  33. Dubost (G.), Nicolas (M.), Havot (H.). Theory and applications of broadband microstrip antennas.Proc. 6th European Microwave Conf., Rome (1976), pp. 275–279.

  34. Harrington (R. F.. Time harmonic electromagnetic fields. McGrawHill, New York (1961).

    Google Scholar 

  35. Chuang (S. L., Tsang (L., Kong (J. A., Chew (W. C.. The equivalence of the electric and magnetic surface current approaches in microstrip antenna studies.IEEE Trans. AP, USA (1980),28, pp. 569–571.

    Google Scholar 

  36. Derneryd (A. G.. Linearly polarized microstrip antennas.IEEE Trans. AP, USA (1976),24, pp. 846–851.

    Google Scholar 

  37. Derneryd (A. G.. A theoretical investigation of the rectangular microstrip antenna element.IEEE Trans. AP, USA (1978),26, pp. 532–535.

    Google Scholar 

  38. Dubost (G.. Transmission line model analysis of a lossy rectangular microstrip patch.Electron. Letters, UK (1982),18, pp. 281–282.

    Google Scholar 

  39. Lier (L.. Improved formulas for input impedance of coax-fed microstrip patch antennas.Proc. IEE Pt. H (MOA), UK (1982),129, pp. 161–164.

    Google Scholar 

  40. Sengupta (D. L.. Resonant frequency of a tunable rectangular patch antenna.Electron. Letters, UK (1984),20, 15, pp. 613–615.

    Google Scholar 

  41. Bhattacharyya (A. K., Garg (R.. Self and mutual admittance between two concentric, coplanar, circular radiating current sources.Proc. IEE Pt. H (MOA), UK (1984),131, 3, pp. 217–219.

    Google Scholar 

  42. James (J. R., Wilson (G. R.. Microstrip antennas and arrays —fundamental action and limitations.Proc. IEE Pt. H (MOA), UK (1977),1, pp. 165–174.

    Google Scholar 

  43. Hammer (P., Van Bouchaute (D., Verschraeven (D., Van de Capelle (A.. A model for calculating the radiation field of microstrip antennas.IEEE Trans. AP, USA (1979),27, pp. 267–270.

    Google Scholar 

  44. Long (S., Shen (L. C., Morel (P. B.. Theory of the circular-disk printed-circuit antenna.Proc. IEE, UK (1978),125, pp. 925–929.

    Google Scholar 

  45. Derneryd (A. G.. Analysis of the microstrip disk antenna element.IEEE Trans. AP, USA (1979),27, pp. 660–664.

    Google Scholar 

  46. Derneryd (A. G., Lind (A. G.. Extended analysis of rectangular microstrip resonator antennas.IEEE Trans. AP, USA (1979),27, pp. 846–849.

    Google Scholar 

  47. Bahl (I. J., Bhartia (P.. Radiation characteristics of a triangular microstrip antenna.Archiv Elek. Ubertragungstech., Allemagne (1982),35, pp. 214.

    Google Scholar 

  48. Long (S., McAllister (M. W.. The impedance of an elliptical printed circuit antenna.IEEE Trans. AP, USA (1982),30, pp. 1197–1200.

    Google Scholar 

  49. Lo (Y. T., Solomon (D., Richards (W. F.. Theory and experiment on microstrip antennas.IEEE Trans. AP, USA (1979),27, pp. 137–145.

    Google Scholar 

  50. Carver (K. R.). A modal expansion theory for the microstrip antenna.IEEE APS Int’l Symposium, Seattle (1979), pp. 101–104.

  51. Yano (S., Ishimaru (A.. A theoretical study of the input impedance of a circular microstrip disk antenna.IEEE Trans. AP, USA (1981),29, pp. 77–83.

    Google Scholar 

  52. Richards (W. F., Lo (Y. T., Harrison (D. D.. An improved theory for microstrip antennas and applications.IEEE Trans. AP, USA (1981),29, pp. 38–46.

    Google Scholar 

  53. Carver (K. R., Mink (J. W.. Microstrip antenna technology.IEEE Trans. AP, USA (1981),29, pp. 2–24.

    Google Scholar 

  54. Gupta (K. C.), Sharma (P. C.). Segmentation and desegmentation techniques for analysis of planar microstrip antennas.IEEE APS Int’l Symposium, Los Angeles, CA, USA (1981), p 19

  55. Okoshi (T., Miyoshi (T.. The planar current. An approach to microwave integrated circuits.IEEE Trans. MTT, USA (1972),20, pp. 245–252.

    Google Scholar 

  56. Gupta (K. C., Garg (R., Bahl (I. N.. Microstrip lines and slotlines.Artech House, Dedham, MA, USA (1979).

    Google Scholar 

  57. Itoh (T., Menzel (W.. A full wave analysis method for open microstrip structures.IEEE Trans. AP, USA (1981),29, pp. 63–67.

    Google Scholar 

  58. Araki (K., Itoh (T.. Hankel transform domain analysis of open circular microstrip radiating structures.IEEE Trans. AP, USA (1981),29, pp. 84–89.

    Google Scholar 

  59. Wood (C.. Analysis of microstrip circular patch antennas.Proc. IEE Pt. H (MOA), UK (1981),128, pp. 69–76.

    Google Scholar 

  60. Lo (Y. T.. Electromagnetic field of a dipole source above a grounded dielectric slab.J. Appl. Phys., USA (1954),25, p. 733.

    MathSciNet  MATH  Google Scholar 

  61. Brick (D. B.. The radiation of a hertzian dipole over a coated conductor.Proc. IEE, UK (1955),102 C, pp. 104–121.

    Article  MathSciNet  Google Scholar 

  62. Sommerfeld (A.. The propagation of waves in wireless telegraphy (en allemand).Ann. Phys., Allemagne (1909), série 4,28, p. 665.

    Google Scholar 

  63. Sommerfeld (A.. Partial differential equations in physics.Academic Press, New York (1949).

    MATH  Google Scholar 

  64. Wu (T. T.. Theory of the microstrip.J. Appl. Phys., USA (1957),28, pp. 299–302.

    MATH  Google Scholar 

  65. Delogne (P.. On Wu’s theory of microstrip.Electron. Letters, UK (1970),6, pp. 541–542.

    Google Scholar 

  66. Brekhovskikh (L. M.. Waves in layered media.Academic Press, New York (1960)

    Google Scholar 

  67. Wait (J. R.. Electromagnetic waves in stratified media.Pergamon Press, Oxford (1962).

    MATH  Google Scholar 

  68. Felsen (L. B., Marcuvitz (N.. Radiation scattering of waves. Prentice Hall, Englewood Cliffs, NJ, USA (1973).

    Google Scholar 

  69. Kong (J. A.. Theory of electromagnetic waves.John Wiley, New York, USA (1975).

    Google Scholar 

  70. Uzunoglu (N. K., Alexopoulos (N. G., Fikioris (J. G.. Radiation properties of microstrip dipoles.IEEE Trans. AP, USA (1979),27, pp. 853–858.

    Google Scholar 

  71. Mosig (J. R.), Gardiol (F.). The near field of an open microstrip structure.IEEE APS Int’l Symp., Seattle WA, USA (1979), p. 379.

  72. Tai (C. T.. Dyadic Green’s functions in electromagnetic theory.Intext. Publ., Scranton PA, USA (1971).

    Google Scholar 

  73. Agrawal (P. K., Bailey (M. C.. An analysis technique for microstrip antennas.IEEE Trans. AP, USA (1977),25, pp. 756–759.

    Google Scholar 

  74. Richmond (J. H.. A wire-grid model for scattering by conducting bodies.IEEE Trans. AP, USA (1966),14, pp. 782–786.

    Google Scholar 

  75. Miller (E. K., Deadrick (F.. Some computational aspects of thin wire modeling. In numerical and asymptotic techniques in electromagnetics, édité par R. Mittra.Springer Verlag, New York (1975).

    Google Scholar 

  76. Rana (I. E., Alexopoulos (N. G.. Current distribution and input impedance of printed dipoles.IEEE Trans. AP, USA (1981),29, pp. 99–105.

    Google Scholar 

  77. Thiele (G. A.. Wire antennas. In Computer techniques for Electromagnetics, édité par R. Mittra,Pergamon Press, Oxford (1973).

    Google Scholar 

  78. Chew (W. C., Kong (J. A.. Analysis of a circular microstrip disk antenna with a thick dielectric substrate.IEEE Trans. AP, USA (1981),29, pp. 68–76.

    Google Scholar 

  79. Ali (S. M., Chew (W. C., Kong (J. A.. Vector Hankel transform analysis of annular-ring microstrip antenna.IEEE Trans. AP, USA (1982),30, pp. 637–644.

    Google Scholar 

  80. Pozar (D. M.. Input impedance and mutual coupling of rectangular microstrip antennas.IEEE Trans. AP, USA (1982),30, pp. 1191–1196.

    Google Scholar 

  81. Bailey (M. C., Deshpande (M. D.. Integral equation formulation of microstrip antennas.IEEE Trans. AP, USA (1982),30, pp. 651–655.

    Google Scholar 

  82. Deshpande (M. D., Bailey (M. C.. Input impedance of microstrip antennas.IEEE Trans. AP, USA (1982),30, pp. 645–650.

    Google Scholar 

  83. Stratton (J. A.. Electromagnetic theory.McGrawHill, New York (1941).

    MATH  Google Scholar 

  84. Morse (P., Feshbach (H.. Methods of theoretical physics.McGrawHill, New York (1953).

    MATH  Google Scholar 

  85. Van Bladel (J.. Some remarks on Green’s dyadic for infinite space.IRE Trans. AP, USA (1961),9, pp. 563–566.

    Google Scholar 

  86. Kellogg (O. D.. Foundations of potential theory. (1929), reprinted bySpringer Verlag, New York (1967).

    Google Scholar 

  87. Fikioris (J. G.. Electromagnetic field inside a current carrying region.J. Math. Phys. USA (1965),6, pp. 1617–1620.

    MathSciNet  Google Scholar 

  88. Rahmat-Samii (Y.. On the question of computation of dyadic Green’s function at source region in waveguides and cavities.IEEE Trans. MTT, USA (1975),23, p. 762.

    Google Scholar 

  89. Chen (K. M.. A simple physical picture of tensor Green’s function in source region.Proc. IEEE, USA (1977),65, pp. 1202–1204.

    Google Scholar 

  90. Yaghjian (A. D.. Electric dyadic Green’s functions in the source region.Proc. IEEE, USA (1980),68, pp. 248–263.

    Google Scholar 

  91. Lee (S. W., Boersma (J., Law (C. L., Deschamps (G. A.. Singularity in Green’s function and its numerical evaluation.IEEE Trans. AP, USA (1980),28, pp. 311–317.

    MathSciNet  MATH  Google Scholar 

  92. Collin (R. E.. Field theory of guided waves.McGraw-Hill, New York, USA (1960).

    Google Scholar 

  93. Gardiol (F.. Hyperfréquences. Vol. XIII du Traité d’Electricité de l’Ecole Polytechnique Fédérale de Lausanne.Georgi, Saint-Saphorin, Suisse (1981).

    Google Scholar 

  94. Brent (R.. Algorithms for minimization without derivatives.Prentice Hall, Englewood Cliffs, NJ USA (1973).

    MATH  Google Scholar 

  95. Marsden (J. E.. Basic complex analysis.W. H. Freeman Co., San Francisco, CA, USA (1973).

    MATH  Google Scholar 

  96. Lytle (R. J., Lager (D. L.. Numerical evaluation of Sommerfeld integrals. Lawrence Livermore Lab., Université de Californie,Rapport UCRL-52423, USA (1974).

    Google Scholar 

  97. Filon (L. N. G.. On a quadrature formula for trigonometric integrals. Proc. Roy. Soc. Edinburgh (1928),49, p. 38.

    Google Scholar 

  98. Delves (L. M.. The numerical evaluation of principal value integrals.Comp. J., USA (1967),10, pp. 389–391.

    MathSciNet  Google Scholar 

  99. Davies (P. J., Rabinowitz (P.. Methods of numerical integration.Academic Press, New York (1975).

    Google Scholar 

  100. Mosig (J. R., Gardiol (F.. A dynamic vector potential theory for three-dimensional microstrip structures.AGEN Mitteilungen, Suisse (1978),26, pp. 45–52.

    Google Scholar 

  101. Mosig (J. R., Gardiol (F.. Analytical and numerical techniques in the Green’s function treatment of microstrip antennas and scatterers.Proc. IEE, Pt. H (MOA), Londres (1983),130, pp. 175–182.

    MathSciNet  Google Scholar 

  102. Abramovitz (M., Stegun (I.. Handbook of mathematical Functions.Dover, New York (1965).

    Google Scholar 

  103. Ralston (A.. A first course in numerical analysis.McGrawHill, New York, USA (1965).

    MATH  Google Scholar 

  104. Squire (W.. An efficient iterative method for numerical evaluation of integrals over a semi-infinite range.Int. J. Num. Meth. (1975),9, pp. 478–484.

    Google Scholar 

  105. Pocklington (H. C.. Electrical oscillations in wires.Proc. Cambridge Phil. Soc. (1897),9, pp. 324–332.

    Google Scholar 

  106. Hallen (E.. Theoretical investigations into the transmitting and receiving qualities of antennas.Nova Acta Regiae Soc. Sci Uppsala Ser. IV (1938),2, pp. 1–44.

    Google Scholar 

  107. Fock (V. A.. In electromagnetic diffraction and propagation problems.Pergamon Press, Oxford (1946).

    Google Scholar 

  108. Maue (A. W.. Zur Formulierung eines Allgemeinen Beugungsproblems durch eine Integralgleichung.Zeitsch. für Physik, Dtsch (1949),12, pp. 601–618.

    MathSciNet  Google Scholar 

  109. Mittra (R., Rahmat-Samii (Y., Jamneiad (D. V., Davis (W. A.. A new look at the thin plate scattering problem.Radio Science, USA (1973),8, pp. 869–875.

    Google Scholar 

  110. Rahmat-Samii (Y., Mittra (R.. Integral equation solution and RCS computation of a thin rectangular plate.IEEE Trans. AP, USA (1974),22, pp. 608–610.

    Google Scholar 

  111. Jones (D. S.. Methods in electromagnetic wave propagation.Clarendon Press, Oxford (1979).

    Google Scholar 

  112. Kreyszig (E.. Advanced engineering mathematics.4th John Wiley, New York, USA (1979).

    MATH  Google Scholar 

  113. Wilton (D. R.), Glisson (A. W.). On improving the stability of electric field integral equation at low frequency.IEEE APS Symp. Los Angeles (1981).

  114. Newman (E. H., Pozar (D. M.. Electromagnetic modeling of composite wire and surface geometry.IEEE Trans. AP, USA (1978),26, pp. 784–789.

    Google Scholar 

  115. Collin (R. E.. Foundations for microwave engineering.McGrawHill, New York, USA (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosig, J.R., Gardiol, F. Techniques analytiques et numériques dans l’analyse des antennes microruban. Ann. Télécommun. 40, 411–437 (1985). https://doi.org/10.1007/BF03003649

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03003649

Mots clés

Key words

Navigation