Skip to main content
Log in

Antenna technology at INTELSAT

Technique des antennes INTELSAT

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

After a brief summary of the evolution of antenna technology atintelsatand of specific constraints for theintelsatsystem, the paper presents a reminder of the fundamentals of multi-beam antenna design : reflector size and number of feed elements, spill-over loss, cross-polarization, gain factor of merit (and the equivalent notions of gain xarea product and gain xbeamwidth product). Also, the paper presents a concise description of the antenna subsystem ofintelsatV and of the hemi/zone antenna ofintelsatVI, and provides the references of detailed publications. Then the paper provides highlights ofintelsatresearch and development on satellite antenna technology, refering to available publications for more detail. Finally, the paper presents a brief summary of the progress in antenna technology forintelsatEarth stations.

Analyse

Après un bref rappel de l’évolution technique des antennesintelsat,et des contraintes propres au systèmeintelsatlui-même, Fauteur présente un rappel des notions fondamentales pour l’étude des antennes multifaisceaux : dimensions du réflecteur et nombre d’éléments de la source, pertes par débordement,polarisation croisée, facteur de mérite en gain (et les notions équivalentes de produit gain xsurface de couverture et gain xouverture angulaire du faisceau). Aussi, l’auteur présente une description succincte du sous-système antenne d’intelsatV et de l’antenne d’intelsatVI pour couverture d’hémisphères et de zones,et fournit les références de publications plus détaillées. Ensuite, l’auteur effectue un survol du programme de recherche et développement d’intelsatsur la technique des antennes pour satellites, et donne les références de publications plus détaillées disponibles dans la littérature. Enfin, l’auteur présente un bref résumé du progrès technique pour les antennes des stations terriennesintelsat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiFonzo (D. F.). The evolution of communication satellite antennas.IEEE Int. Symp. AP-S, Albuquerque, N.M. (1982), pp. 358–361.

  2. Born, Wolf. Principle of optics.Pergamon Press, 5th edition, NY (1975), pp. 393–401.

    Google Scholar 

  3. Tsandoulas (G. M., Fitzgerald (W. D.. Aperture efficiency enhancements in dielectrically loaded horns.IEEE Trans. AP, USA (Jan. 1972),20, pp. 69–74.

    Google Scholar 

  4. Chan (K. K.), Huang (C. C.), Raab (A. R.). Dielectric loaded trifurcated horn for H-plane stacked reflector feed array.IEE Proc. Pt. H, USA (Feb. 1980),127, n∘ 1.

  5. Vidal Saint-Andre (B.), Neyret (P.). The application of single reflector multi-feed antennas to direct T.V. satellites.10th European Microwave Conference, Warszawa, Poland (1980).

  6. Chu (T. S., Turrin (R. N.. Depolarization properties of offset reflector antennas.IEEE Trans. AP, USA (May 1973),29, n 3, pp. 339–345.

    Google Scholar 

  7. Difonzo (D. F.), English (W. J.), Janken (J. A.). Polarization characteristics of offset reflectors with multiple element feeds.G-AP International Symposium Digest. (1973), pp. 302–305.

  8. Drabowitch (S.). Livre 3. Grandes antennes, pp. 14–23 et pp. 86–88 dans la série «Antennes» par E. Roubine, J. Ch. Bolomey, S. Drabowitch et C. Ancona, tome 2,Masson, Fr. (1978).

  9. Adatia (N. A.), Rudge (A. W.). Beam squint in circularly polarized offset reflector antennas.IEE Electron. Letters, GB (Oct. 1975), pp. 513–515.

  10. English (W. J.). Earth station antenna polarization measurements. 1977,URSI Seminar, «La mesure dans les télécommunications». Lannion (France), CNET Editor.

  11. Neyret (P.). Polarization properties of feed array for shaped beam antenna.Digest of IEEE Int. Symp. AP-S, Washington, DC (May 1978), pp. 361–364.

  12. Neyret (P.. Experimental study of cross polarization of feed-horn clusters. Comsat technical Review. Fall (1978),8, n∘ 2, pp. 405–420.

    Google Scholar 

  13. Neyret (P.), Vidal Saint-Andre (B.), Rousselet (M.). Caractéristiques des antennes à source primaire multiéléments, couplage entre éléments, rayonnement en polarisation croisée.Journées Nationales Microondes, Lille (26–29 juin 1979), Session AN.1.5., SEE Réf. n∘ 719080.

  14. Potter (P.. A new horn antenna with suppressed sidelobes and equal beamwidths.Microwave J., USA (June 1963),6, pp. 71–78.

    Google Scholar 

  15. English (W. J.. The circular waveguide step-discontinuity mode transducer.IEEE Trans. MTT (Oct. 1973),21, n∘ 10, pp. 633–636.

    Article  Google Scholar 

  16. Caufield (M. F.), Taormina (F. A.),et al.Intelsat-VI antenna system design and development. NASA Conference on large space antenna systems technology.Publication 2269, Hampton, VA (1982), part. 2.

  17. Lane (S. O.), Caufield (M. F.), Taormina (F. A.).Intelsat-VI antenna system overview.AIAA 10th Communication Satellite Systems Conference, Orlando, Florida (19 March 1984).

  18. Vidal Saint-Andre (B.), Neyret (P.), Curbelie (B.). Antennes multisources à réflecteur unique pour satellite de télévision directe.Colloque International CNES/DGT/ TDF Espace. Télécom. Spatiales et Radiodiffusion par Satellites, Toulouse (mars 1979), Session A.1.8.

  19. Sciambi (A. F.. The effect of aperture illumination on the circular aperture antenna pattern characteristics.Microwave J., USA (Aug. 1965), pp. 79–84.

    Google Scholar 

  20. Saitto (A.. Gain-beamwidth product and other reflectorantenna relationship.ESA Journal (1981),5, n∘ 3, pp. 249–258.

    Google Scholar 

  21. *** Actes Finals.C.A.M.R. Radiodiffusion par Satellite, Genève UIT publication (1977).

  22. Schennum (G. M.), Ward (H. T.).Intelsat-V spacecraft antenna subsystem.ICC 80, Seattle (June 1980), pp. 25-1-1 to 25-1-6.

  23. Nygren (E. C). Shaped-beam, frequency re-use feed arrays for offset fed reflectors.8th AIAA Conference on Satellite Communications, Orlando, Florida (1980), pp. 746–754. AIAA paper 80-0558.

  24. Chen (M. H., Tsandoulas (G. N., A wide-band square waveguide array polarizer.IEEE Trans AP, USA (May 1973),21, n∘ 3, pp. 389–391.

    Google Scholar 

  25. Schennum (G. M.), Han (C. C.), Gould (H. J.). Reduction of mutual coupling in a waveguide array.Digest of IEEE Int. Symp. AP-S, Washington, DC (May 1978), pp. 412–415.

  26. Vidal Saint-Andre (B.), ECS/SCDS phase A, final report. SHF antenna subsystem survey.Contract ESTEC/BAC -R 2010/WHM, MFF (1972).

  27. Padova (S. de), Pagana (E.), Rosenga (G.). A new elliptically shaped-beam antenna.8th European Microwave Conference, Paris, France (1978), pp. 197–202.

  28. Bielli (I. P.), Devincenti (P.), Doro (G.), Saitto (A.). Design of 11/14 GHz elliptical beam reflector antenna steerable in a wide angular zone.AIAA 7th Communications Satellite Systems Conference, San Diego, California (Apr. 24–27, 1978).

  29. Barberis (N. J.), Hoeber (C. F.). Design summary of the advancedIntelsat-V spacecraft.9th AIAA Conference on Satellite Communications, San Diego, California (1982), pp. 548–558. AIAA paper 82-0537.

  30. Dragone (C.). An improved antenna for microwave radio systems consisting of two cylindrical reflectors and corrugated feed.Bell Syst. tech. J., USA (1974),53, n∘ 7.

  31. Saitto (A.), Patel (D.), Doro (G.), Trombetta (B.). High efficiency satellite antenna.Electronics Letters, UK (14th Apr. 1983),19, n∘ 8.

  32. Marx (S. M.). Precise orientation of multi-beam satellite.23rd Congress IAF’81, Roma, Italy (Sep. 1981), paper IAF-81-53.

  33. Zaghloul (A. I.), Persinger (R. R.), Difonzo (D.). Design optimization procedures for multi-feed satellite shaped beam.11th European Microwave Conference, Amsterdam, Netherlands (Sep. 1981), pp. 540–545.

  34. Foldes (P.). Recent advances in multibeam antennas.11th European Microwave Conference, Amsterdam, Netherlands (Sep. 1981), pp. 59–72.

  35. Smith (T.), Matthews (E. W.), Boyd (C. R.). C-band variable power divider and variable phase shifter developments.9th AIAA Conference on Communication Satellite Systems, San Diego, Calif. (1982), pp. 693–697. AIAA papsr 82-0615.

  36. Price (K. M.), Matthews (E. W.), Han (C. C.), Smith (T.), English (W. J.) Spacecraft reconfigurable multibeam antenna feed network technology, to be published atEASCON’84.

  37. Krichevsky (V.). Beam scanning in offset cassegrain antenna.IEEE AP-S Symposium, Albuquerque, NM (1982), Digest, pp. 257–260.

  38. Rappaport (C. M.). The offset bifocal reflector antenna.IEEE AP-S Symposium, Albuquerque, NM (1982), Digest pp. 265–268.

  39. aMarino (S.). Front-fed offset Cassegrain type multibeam antenna.National Conv. Record, IECE, Japan (1979), S-19-6.

  40. bMakino (S.), Miyamara (N.), Kobayashi (Y.), Okubo (K.), Katagi (T.). Radiation characteristics of frontfed offset Cassegrain type multi-beam antenna, to be published inNational Conv. Record. IECE, Japan (1985).

  41. Dragone (C.. Unique reflector arrangement with very wide field of view for multi-beam antenna.Electronics letters, UK (8th Dec. 1983),19, pp. 1061–1062.

    Article  Google Scholar 

  42. Smoll (A. E.), Roberts (T. E.), Matthews (E. W.), Lee (E. A.), Han (C. C.). A new multiple-beam satellite antenna for 30/20 GHz communications coverage of CONUS experimental evaluation.10th AIAA Conference on Satellite Communication Systems. Orlando, Florida (1984), pp. 33–42. AIAA paper 84-0655.

  43. Vu (T. B.. Design procedure for offset dual reflectors with low cross-polarization.Electronics letters, UK (19th Jan. 1984),20, n∘ 2, pp. 64–66.

    Article  Google Scholar 

  44. Clarricoats (P. J. B.), Tun (S. M.), Brown (R. C). The effect of mutual coupling in dual-reflector antennas fed from conical horn arrays.IEEE AP-S Symposium, Boston, MA (June 1984). Paper APS-13-9. Digest pp. 494–497.

  45. Bornemann (W.), Balling (P.). Synthesis of spacecraft frequency re-use array antennas with multiple contoured brams.IEEE AP-S Symposium, Boston, MA (June 1984). Paper APS-5-3. Digest pp. 139–142.

  46. Foldes (P., Meier (R., Hill (T.. ISL tracking antenna concepts.IEEE ICC, Denver, Colorado (June 1981),3, pp. 70-5-1.

    Google Scholar 

  47. Carpenter (E.). An optimized dual polarization global beam antenna.9th AIAA Communication Satellite Systems Conference, San Diego, Calif. (1982), pp. 736–739. AIAA paper 82-0442.

  48. Daveau (D.). Synthèse et optimisation de réflecteurs de formes spéciales pour antennes.Revue technique Thomson-CSF, Fr. (mars 1970).

  49. Gruner (R. W..Intelsat-V earth station antenna technology.INTELCOM 77, Atlanta, Ga (Oct. 1977). Proc.1, pp. 242–248.

    Google Scholar 

  50. Burdine (B. M., Wilkinson (E. J.. A low sidelobe earth station antenna for the 4/6 GHz band.Microwave J., USA (Nov. 1980), pp. 53–58.

    Google Scholar 

  51. Satoh (T.et al. Sidelobe level reduction by improvement of strut shape.IEEE Trans. AP, USA (July 1984),32, n∘ 7, pp. 698–704.

    Google Scholar 

  52. Hyde (G., Kreutel (R. W., Smith (L.. The unattended terminal multiple beam torus antenna.COMSAT Technical Review (1974),4, n∘ 2, pp. 231–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neyret, P. Antenna technology at INTELSAT. Ann. Télécommun. 40, 361–377 (1985). https://doi.org/10.1007/BF03003644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03003644

Key words

Mots clés

Navigation