Skip to main content
Log in

Fine structure of rainfall

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Abstract

The raindrop size, the raindrop shape, and the raindrop fall velocity measured are shown. It was found that many small raindrops of 50 to 500 μm diameter whose sizes have never been measured, exist in common rainfall. Also the distribution of canting angle of deformed raindrops is measured. For estimating the microwave attenuation due to rainfall, especially that of millimeter waves, a probability distribution function of raindrop size is presented. Finally, it is shown that the raindrop size distribution is not uniquely determined only by rainfall intensity.

Analyse

L’auteur présente des mesures de dimensions et de vitesses de chute des gouttes d’eau, ainsi que l’étude de leur forme. Des petites gouttes de 50 à 500 μm de diamètre dont les dimensions n’ont encore jamais été mesurées, existent dans des pluies ordinaires. Il mesure également la distribution de l’angle d’inclinaison des gouttes déformées. Pour estimer l’atténuation des hyperfréquences due aux précipitations, en particulier pour les longueurs d’onde millimétriques, il présente une fonction de distribution des diamètres des gouttes. La distribution de ces diamètres n’est pas uniquement fonction de l’intensité des précipitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ugai (S.), Shimada (K.). Rainfall attenuation at 6.25 mm wavelength.I.S.A.P., Sendai (sep. 1971), pp. 251–252.

  2. Ryde (J. W.), Ryde (D.). Attenuation of centimetre and millimetre waves by rain, hail, fogs, cloudsG.E.C Report (mai 1945), n∘ 8 670.

  3. Laws (J. O.),Parsons (D. A.). The relation of raindropsize to intensity,Trans. Amer. Geophys. Union (1943),24, pp. 452–460.

    Google Scholar 

  4. Spilhaus (A. P.). Raindrop size, shape and falling speed.J. Meteor., U. S. A. (1948),5, pp. 108–110.

    Google Scholar 

  5. Pruppacher (H. R.),Beard (K. V.). A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air.Quart. J. R. Meteor. Soc., G. B. (1970),96, pp. 247–265.

    Article  Google Scholar 

  6. Kumai (M.),Itagaki (K.). Shape and fall velocity of raindrops,J. Met. Soc. Japan (1954),32, pp. 1–18.

    Google Scholar 

  7. Imai (I.). On the velocity of falling rain drops,Geophys-Mag. Tokyo (1950),21, pp. 244–249.

    Google Scholar 

  8. Gunn (R.),Kinzer (G. D.). The terminal velocity of fall of water drop in stagnant air.J. Meteor. U.S.A. (1949),6, pp. 221–227.

    Google Scholar 

  9. Joss (J.), Thams (J. C.), Waldvogel (A.). The variation of raindrop size distributions at Locano, Proc. internat. conf. on Cloud Physics, Toronto (1968), pp. 369–373.

  10. Marshall (J. S.),Palmer (W. M.). The distribution of raindrops with size.J. Meteor., U. S. A. (1948),5, pp. 165–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ugai, S., Kato, K., Nishijima, M. et al. Fine structure of rainfall. Ann. Télécommunic. 32, 422–429 (1977). https://doi.org/10.1007/BF03003489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03003489

Keywords

Navigation