Skip to main content
Log in

Common language in eukaryotic genes with methylationdependent regulation

Un linguaggio comune nei geni eucariotici regolati dalla metilazione

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abtract

An asymmetric distribution of dcm-inhibiting restriction sites (dcm-sites) takes place in 10 human genes with methylation-dependent regulation. These genes are dcm-site enriched upstream and dcm-site poor downstream. Along them, there is a scattering of hypermethylated introns and hypomethylated exons with a common code: the CpG dinucleotides characterize promoters; Gp0Cs characterize introns; TpCs and CpOCs are in small concentrations in exons. Housekeeping (HK) genes contain more dcm-sites when compared with tissuespecific (TS) genes. This depends on the higher number of dcm-sites in their promoters and introns. In exons, the relatively lower number of dcm-sites is almost the same in both HKs and TSs. Going upstream-downstream, the absolute number of dcm-sites as well as the frequence of these sites per nucteotide units decrease in introns and increase in exons. This difference is highly discriminated for TSs and less discriminated for HKs.

In 10 geni umani con controllo metilazione-dipendente ha luogo una distribuzione asimmetrica dei dcm-siti inibitori di restrittasi. Questi geni sono ricchi di dcm-siti verso l’estremit 5’ e poveri di dcm-siti verso l’estremitä 3’. Nel loro ambito c’é un’intermittenza di introni ipermetilati ed esoni ipometilati con codice comune: i dinucleotidi CpG caratterizzano i promotori; quelli GpC caratterizzano gli introni; i TpC e i CpC si trovano in piccole concentrazioni negli esoni. I geni housekeeping (HK) hanno più dcm-siti rispetto ai tessutospecifici (TS). Ciò dipende dal numero più alto di dcm-siti nei loro promotori e intronL Negli esoni, il numero relativamente pi basso di dcm-siti è quasi identico negli HK e nei TS. In direzione 5’-3’, sia il numero assoluto di dcm-siti che la frequenza di questi siti per unitä di nucleotide decrescono negli introni e aumentano negli esoni. Tale differenza ä altamente discriminata per i TS e meno discriminata per gli HK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bird A. P., 1978.Use of restriction enzymes to study eukaryotic DNA methylation. II. The symmetry of the methylated sites supports semiconservative copying of the methylated pattern. J. Mol. Biol., 118: 49–60.

    Article  CAS  Google Scholar 

  • Cascio O., Fazzio A., Volpe P., 1990.The DNA methylasic reaction in evolution and differentiation. Ital. J. Biochem., 39: 164–165.

    Google Scholar 

  • Chambon P., 1981.Split genes. Sci. Amer., 244: 60–71.

    Article  CAS  Google Scholar 

  • Crick F., 1979.Split genes and RNA splicing. Science, 204: 264–271.

    Article  CAS  Google Scholar 

  • De-Bustros A., Nelkin B. D., Sllverman A., Ehrlich G., Poiesz B., Baylin S. B., 1988.The short arm of chromosome 11 is a «hot spot» for hypermethylation in human neoplasia. Proc. Natl. Acad. Sci. USA, 85: 5693–5697.

    Article  CAS  Google Scholar 

  • Delfini C., Crema A. L., Alfani E., Lo Presti E., Eremenko T., Volpe P., 1987.DNA-methylases separated through the HeLa cell cycle methodology. FEBS-Lett., 210: 17–21; 1988, 227: 85 (errata corrige).

    Article  CAS  Google Scholar 

  • Eremenko T., Volpe P., 1975.Polysome translational state during the cell cycle. Eur. J. Biochem., 52: 203–210.

    Article  CAS  Google Scholar 

  • Fukunaga R., Matsuyama M., Okamura H., Nagata K., Nagata S., Sokawa Y., 1986.Undermethyla- tion of interferon-gamma gene in human T cell lines and normal T lymphocytes. Nucleic Acids Res., 14: 4421–4436.

    Article  CAS  Google Scholar 

  • Geraci D., Eremenko T., Cocchiara R., Granieri A., Scarano E., Volpe P., 1974.Correlation between synthesis and methylation of DNA in HeLa cells. Biochem. Biophys. Res. Commun., 57: 353–361.

    Article  CAS  Google Scholar 

  • Gilbert W., 1978.Why genes in pieces?. Nature, 271: 501.

    Article  CAS  Google Scholar 

  • Holliday R., Pugh J. E., 1975.DNA modification mechanisms and gene activity during development. Science, 187: 226–232.

    Article  CAS  Google Scholar 

  • Holtta E., Hirvonen A., Wahlfors J., Alhonen L., Janne J., Kallio A., 1989.Human ornithine decarboxylase (ODC)-encoding gene: cloning and expression in ODC-deficient CHO cells. Gene, 83: 125–135.

    Article  CAS  Google Scholar 

  • Jahroudi N., Foster R., Price-Haughey J., Beitel G., Gedamu L., 1990.Cell-type specific and differential regulation of the human metallothionein genes. Correlation with DNA methylation and chromatin structure. J. Biol. Chem., 265: 6506–6511.

    CAS  Google Scholar 

  • Jones P. A., Taylor S. M., Mohandas T., Shapiro L. J., 1982.Cell-cycle specific reactivation of an inactive X-chromosome locus by 5-azadeoxycytidine. Proc. Nad. Acad. Sci. USA, 79: 1215–1219.

    Article  CAS  Google Scholar 

  • Kerbel R. S., Liteplo R., Frost P., 1986.On the possible contribution of DNA hypomethylation to the induction of high frequency and heritable drug-induced alterations in the malignant phenotype. Prog. Clin. Biol. Res., 212: 293–304.

    CAS  Google Scholar 

  • Mandel J. P., Chambon P., 1979.DNA methylation organ specific variations in the methylation pattern within and around ovalbumin and other chicken genes. Nucleic Acids Res., 7: 2081–2103.

    Article  CAS  Google Scholar 

  • McGhee J. D., Ginder G. D., 1979.Specific DNA methylation sites in the vicinity of the chicken β-globin genes. Nature, 280: 419–420.

    Article  CAS  Google Scholar 

  • Mclean A., Hilder V. A., 1977.Mechanism of chromatin activation and repression. Internat. Rev. Cytol., 48: 54–74.

    Google Scholar 

  • Meehan R., Antequera F., Lewis J., McLeod D., McKay S., Kleiner E., Bird A. P., 1990.A nuclear protein that binds preferentially to methylated DNA in vitro may play a rule in the inaccessibility of methylated CpGs in mammalian nuclei. Phil. Trans. R. Soc. London, B326: 199–205.

    Google Scholar 

  • Nahon J. L., 1987.The regulation of albumin and alpha-fetoprotein gene expression in mammals. Biochimie, 69: 445–459.

    Article  CAS  Google Scholar 

  • Razin A., Riggs A. D., 1980.DNA methylation and gene function. Science, 210: 604–610.

    Article  CAS  Google Scholar 

  • Ruiz-Opazo N., Zannis V. I., 1988.Expression of the human apolipoprotcin A-l gene in rat myogenic L6E9 cells. DNA methylation and regidation of gene activity. J. Biol. Chem., 263: 1739–1744.

    CAS  Google Scholar 

  • Scarano E., 1971.The control of gene function in cell differentiation and embryogenesis. Adv. Cytopharma-col., 1: 13–21.

    CAS  Google Scholar 

  • Sutter D., Doerfler W., 1980.Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc. Natl. Acad. Sci. USA, 77: 253–256.

    Article  CAS  Google Scholar 

  • Tentravahi V., Guntaka R. V., Erlanger B. F., Miller O. J., 1981.Amplified ribosomal RNA genes in a rat hepatoma cell line enriched in 5-methylcytosine. Proc. Natl. Acad. Sci. USA, 78: 489–493.

    Article  Google Scholar 

  • Volpe P., 1976.The gene expression during the cell life cycle. Horizons Biochem. Biophys., 2: 285–340.

    CAS  Google Scholar 

  • Volpe P., Eremenko T., 1974.Preferential methylation of regulatory genes in HeLa cells. FEBS-Lett., 44: 121–126.

    Article  CAS  Google Scholar 

  • Volpe P., Eremenko T., 1989.Repair-modification and evolution of the eukaryotic genome organization. Cell Biophys., 15: 41–60.

    CAS  Google Scholar 

  • Volpe P., Esposito C, Iacovacci P., Butler R., Eremenko T., 1992.Language of genes with inverse correlation between methylation and transcription. Macromol. Funct. Cell, 7, in press.

  • Volpe P., Menna T., Eremenko T., 1976.RNA transcription and processing as a function of the cell cycle. Bull. Mol. Biol. Med., 1: 18–28.

    CAS  Google Scholar 

  • Whitfield G. K., Kourides I. A., 1985.Expression of chorionic gonadotropin alpha- and beta-genes in normal and neoplastic human tissues: relationship to deoxyribonuncleic acid structure. Endocrinology, 117: 231–236.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nella seduta del 24 aprile 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

di VolPE, N., Iacovacci, P., Esvosrro, C. et al. Common language in eukaryotic genes with methylationdependent regulation. Rend. Fis. Acc. Lincei 3, 383–394 (1992). https://doi.org/10.1007/BF03002945

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03002945

Key words

Navigation