Skip to main content
Log in

A fractals-inspired approach to binary image database indexing and retrieval

Une approche inspirée du codage fractal pour l’indexation et la récupération d’images binaires

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

This paper applies ideas from fractal compression and optimization theory to attack the problem of efficient content-based image indexing and retrieval. Similarity of images is measured by block matching after optimal (geometric, photometric, etc.) transformation. Such block matching which, by definition, consists of localized optimization, is further governed by a global dynamic programming technique (Viterbi algorithm) that ensures continuity and coherence of the localized block matching results. Thus, the overall optimal transformation relating two images is determined by a combination of local block-transformation operations subject to a regularization constraint. Experimental results on some limited subsets of still binary images from the mpeg-7 database demonstrate the power and potential of the proposed approach.

Résumé

Cet article reprend certaines idées du codage fractal et de la théorie de l’optimisation pour tenter de résoudre le difficile problème de l’indexation et de la récupération d’images à partir du contenu. La similarité entre images est mesurée par appariements de blocs incluant des transformations photométriques et géométriques. Une technique d’appartement de blocs qui consiste, par définition, à optimiser localement, est ensuite gérée globalement par une technique de programmation dynamique (algorithmes de Viterbi) qui garantit la continuité et la cohérence des résultats locaux d’appariement de blocs. Ainsi, la transformation optimale globale reliant deux images est déterminée par une combinaison d’opérations locales sur des blocs d’image soumise à une contrainte de régulation. Des simulations menées sur un sousensemble limité d’images binaires extraites de la base d’images mpeg-7 démontrent la puissance et le potentiel de l’approche proposée dans cet article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigrain (P.), Zhang (H.), Petkovic (D.), Content-based representation and retrieval of visual media: A state-of-the-art review,Multimedia Tools and Applications,3(3): 179–202, November 1996.

    Article  Google Scholar 

  2. Idris (F.) Panchanathan (S.), Review of image and video indexing techniques,Journal of Visual Communication and Image Representation,8(2): 146–166, June 1997.

    Article  Google Scholar 

  3. Ahanger (G.) Little (T.D.), A survey of technologies for parsing and indexing digital video,Journal of Visual Communication and Image Representation,7(l):28–43, March 1996.

    Google Scholar 

  4. Brunelli (R.), Mich (O.), Modena (CM.), A survey of the automatic indexing of video data,Journal of Visual Communication and Image Representation,10(2):78-l 12, June 1999.

    Article  Google Scholar 

  5. Randen (T.), Husoy (J.H.), Image content search by color and texture properties. InICIP-97,1, pp. 580 583, 1997.

    Google Scholar 

  6. Yu (H.), Wolf. (W.), A hierarchical, multi-resolution method for dictionary-driven content-based image retrieval. InICIP-97,2, pp. 823–826. 1997.

    Article  Google Scholar 

  7. Swain (M.J.), Ballard. (D.H.), Color indexing.International Journal of Computer Vision, 7(1):1132, 1991,

    Article  Google Scholar 

  8. Smith (J.R.), Chang (S.-F),. Single color extraction and image query. InICIP-95, pp. 528–531, 1995.

  9. Nastar (C), The image shape spectrum for image retrieval.Technical Report 3206, INRIA, July 1997.

  10. Smith (J.R.), Chang (S.F.), Automated binary texture feature sets for image retrieval. InICASSP’96, pp. 2239–2242, May 1996.

  11. Li (C), Li (V.), Castelli (V.). Deriving texture feature set for content-based retrieval of satellite image database.In ICIP-97, 1, pp. 576–579, 1997.

    Google Scholar 

  12. Marie-Julie (J.M.), Essafi (H.), Image indexing by using rotation and scale invariant partition.ECMAST’97, pp. 163–175, 1997.

  13. Beatty (M.), Manjunath (B.S.), Dimensionality reduction using multi-dimensional scaling for content-based retrieval.In ICIP- 97,2, pp. 835–837, 1997.

    Google Scholar 

  14. Smith (J.R.), Chang (S.-F.), Single color extraction and image query, inIEEE ICIP, pp. 528–531, 1995.

  15. Travis (D.), Effective color displays.Academic Press, 1991.

  16. Smith (J.R.), Chang (S.-F.), Automated binary texture feature sets for image retrieval,In IEEE ICASSP’96, pp. 2239–2242, May 1996.

  17. Smith (J.R.), Chang (S.-F.), Transform features for texture classification and discrimination in large image database,In IEEE ICIP, pp.407–410, 1994.

  18. Li (C), Castelli (V.), Deriving texture feature set for content- based retrieval of satellite image database,In IEEE ICIP-97, 1, pp. 576–579, 1997.

    Google Scholar 

  19. Swanson (M.D.), Tewfik (A.H.), Affine-invariant multiresolution image retrieval using b-splines,In IEEE ICIP-97, 2, pp. 831- 833, 1997.

    Google Scholar 

  20. Hu (M.K.), Visual pattern recognition by moment invariant,IRE Trans. on Information Theory, (8), 1962.

  21. *** Qbic.http://www.qbic.almaden.ibm.com/

  22. *** Viragehttp://www.virage.com/

  23. *** RetrievalWarehttp://vrw.excalib.com/cgi-bin/sdk/cst/cst2.bat

  24. *** Photobookhttp://www-white.media.mit.edu/vismod/demos/ photobook/

  25. *** NeTra.http://vivaldi.ece.ucsb.edu

  26. *** CIIR.http://www.cs.umass.edu/~demo/Demo.html

  27. *** Surfimage.http://www.rocq-inria.fr/cgi-bin/imedia/surfimage.cgi

  28. *** Viper, http://www.cui.ch/~viper/#demo

  29. Jacquin (A.E.), Image coding based on a fractal theory of iterated contractive image transformation,IEEE Transactions on Image Processing,l(l):18–30, January 1991.

    Google Scholar 

  30. Polidori (E.), Dugelay (J.-L.), Zooming using ifs,Journal of fractals. 5, Supplementary Issue, pp. 111–123, April 1997.

    Article  Google Scholar 

  31. Roche (S.), Dugelay (J.-L.), Fractal transform based large digital watermark embedding and robust full blind extraction. InIEEE ICMCS’99, June 07, 1999 — Florence, Italy.

  32. Zhang (A.), Cheng (B.), Acharya (R.), A fractal-based clustering approach in large visual database systems,Multimedia Tools and Applications, (3):225–244, 1996.

  33. Marie-Julie (J.M.), Essafi (H.), Image database indexing and retrieval using the fractal transform, InECMAST’97, pp. 169– 182, 1997.

  34. Bellman (R.), Dynamic programming.Princeton University Press, 1957.

  35. Viterbi (A.J.), Errors bounds for convolutional codes and asymptotically optimum decoding algorithm,IEEE Transactions on Information Theory,13:260–269, 1967.

    Article  MATH  Google Scholar 

  36. Li (J.), Najmi (A.), Gray (R.), Image classification by a two- dimensional hidden markov model,in IEEE ICASSP’99,6, pp. 3313–3316, March 1999.

    Google Scholar 

  37. Koenen (R.), A new standard for the description of multimedia information: mpeg-7,EURASIPNEWS,9(l-2):5–8, May 1998.

    Google Scholar 

  38. *** AT&T Cambridge,http://www.cam-orl.co.uk/facedatabase. html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Luc Dugelay or Kenneth Rose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vissac, M., Dugelay, JL. & Rose, K. A fractals-inspired approach to binary image database indexing and retrieval. Ann. Télécommun. 55, 194–200 (2000). https://doi.org/10.1007/BF03001912

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001912

Key words

Mots clés

Navigation