Skip to main content
Log in

Synthesis of β-tubulin mRNA in neural induction and specification

Sintesi di mRNA di β-tubulina durante ľinduzione e ľorientamento specifico neurale

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In situ hybridization experiments carried out with β-tubulin cDNA onXenopus laevis embryos showed a marked increase in β-tubulin mRNA in neural plate and lateral ectoderm after gastrulation, when chordomesoderm and ectoderm come in contact. Experiments with fragments of presumptive neural ectoderm explanted before and after neural induction suggest that the cells are already specified in neural sense at the blastula stage, long before the neural induction.

Riassunto

Ľibridazionein situ condotta su embrioni diXenopus laevis con cDNA di β-tubulina ha dimostrato un forte incremento nelle cellule della piastra neurale e delľectoderma laterale dopo la gastrulazione, quando il cordomesoderma viene a contatto con ľectoderma. Esperimenti condotti su espianti di ectoderma neurale presuntivo eseguiti prima e dopo ľinduzione neurale suggeriscono che le cellule abbiano già un orientamento specifico in senso neurale allo stadio di blastula. prima che ľinduzione avvenga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angerer L. M. andAngerer R. C., 1981.Detection of poly A + RNA in sea urchin eggs and embryos by quantitative in situhybridization. Nucleic Acid Res., 9: 2819–2840.

    Article  CAS  Google Scholar 

  • Banville D. andWilliams J. G., 1985.Developmental changes in the pattern of larval β-globin gene expression in Xenopus laevis. J. molec. Biol., 184: 611–620.

    Article  CAS  Google Scholar 

  • Bergamaschi G., De Bernardi F. eSotgia C., 1988.Localizzazione di mRNA di α-e β-tubulina in embrioni di Xenopus laevis. Rend. Ist. Lombardo Sc. B, 122:107–119.

    Google Scholar 

  • Cicada Leonardi M., Bolzern A. M., De Bernardi F., Fascio U. andSotgia C., 1987.Microtubules and microfilaments in chick embryo postnodal explants treated with mRNAs. Acta Embryol. Morphol. Exper., 8: 465–471.

    Google Scholar 

  • Cleveland D. W., Lopata M. A., Mac Donald R. J., Cowan N. J., Rutter W. J. andKirschner M. W., 1980.Number and evolutionary conservation of α- and β-tubulin and cytoplasmic β- and γ-actin genes using specific cloned cDNA probes. Cell, 20: 95–105.

    Article  CAS  Google Scholar 

  • Dale L., Smith J. C. andSlack J. M. W., 1985.Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies. J. Embryol. exp. Morph., 81: 37–47.

    Google Scholar 

  • Dawid I. B. andSargent T. D., 1988. Xenopus laevisin developmental and molecular biology. Science, 240: 1443–1448.

    Article  CAS  Google Scholar 

  • De Bernardi F., 1982.Polyadenylated mRNAs from various developmental stages of Xenopus laevis. Role of 26S mRNA. Expl. Cell. Biol., 50: 281–290.

    Article  Google Scholar 

  • De Bernardi F. andCondorelli L., 1987.Synthesis of tubulin mRNA in different regions of Xenopus laevis embryo. Acta Embryol. Morphol. Exper., 8: 457–464.

    Google Scholar 

  • De Bernardi F., Sotgia C., Bolzern A. M., Cigada Leonardi M., Fascio U. andRanzi S., 1986.Cell-shape modification induced by exogenous mRNA in postnodal expiants of chick embryo blastoderm. In:H. C. Slavkin (ed.),Progress in Developmental Biology. Part. A, Alan R. Liss, New York: 331–334.

    Google Scholar 

  • Dworkin-Rastl E., Kelley D. B. andDworkin M. B., 1986.Localization of specific mRNA sequences in Xenopus laevisembryos by in situhybridization. J. Embryol. exp. Morph., 91: 153–168.

    CAS  Google Scholar 

  • Edelman G. M., 1984.Cell adhesion and the molecular processes of morphogenesis. Ann. Rev. Neurosci., 7: 339–377.

    Article  CAS  Google Scholar 

  • Good P. J., Richter K. andDawid I., 1989.The sequence of a nervous system-specific, class II β-tubulin gene from Xenopus laevis. Nucl. Ac. Res., 17: 8000.

    Article  CAS  Google Scholar 

  • Gurdon J. B., 1987.Embryonic induction — molecular prospects. Development, 99: 285–306.

    CAS  Google Scholar 

  • Gurdon J. B., 1989.The localization of an inductive response. Development, 105: 27–33.

    CAS  Google Scholar 

  • Gurdon J. B., Fairman S., Mohun T. J. andBrennan S., 1985.Activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula. Cell, 41: 913–922.

    Article  CAS  Google Scholar 

  • Havercroft J. C. andCleveland D. W., 1984.Programmed expression of β-tubulin genes during development and differentiation of the chicken. J. Cell Biol., 99: 1927–1935.

    Article  CAS  Google Scholar 

  • Herrmann H., Fouquet B. andFranke W. W., 1989.Expression of intermediate filament proteins during development of Xenopus laevis.II. Identification and molecular characterization of desmin. Development, 105: 299–307.

    CAS  Google Scholar 

  • Hopwood N. D., Pluck A. andGurdon J. B., 1989.MyoD expression in the forming somites is an early response mesoderm induction in Xenopusembryos. EMBO J., 8: 3409–3417.

    CAS  Google Scholar 

  • Jacobson M. andRutishauser U., 1986.Induction of neural cell adhesion molecule (N-CAM) in Xenopus embryos. Devl. Biol., 116: 524–531.

    Article  CAS  Google Scholar 

  • Jamrich M., Mahon K. A., Gavis E. R. andGall J. G., 1984.Histone RNA in amphibian oocytes visualized by in situhybridization to methacrylate-embedded tissue sections. EMBO J., 3: 1939–1943.

    CAS  Google Scholar 

  • Karfunkel P., 1974.The mechanism of neural tube formation. Int. Rev. Cytology, 38: 245–271.

    Article  CAS  Google Scholar 

  • Keller R. E., 1975.Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Devl. Biol., 42: 222–241.

    Article  CAS  Google Scholar 

  • Kintner C. R. andMelton D. A., 1987.Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development, 99: 311–325.

    CAS  Google Scholar 

  • London C., Akers R. andPhillips C., 1988.Expression of Epi 1,an epidermids-specific marker in Xenopus laevisembryos, is specified prior to gastrulation. Devl. Biol., 129: 380–389.

    Article  CAS  Google Scholar 

  • Lopata M. A., Havercroft J. C., Chow L. T. andCleveland D. W., 1983.Four unique genes required for β-tubulin expression in Vertebrates. Cell, 32: 713–724.

    Article  CAS  Google Scholar 

  • Maniatis T.,Fritsch E. F. andSambrook J., 1982.Molecular cloning. Cold Spring Harbor Lab., 545 pp.

  • Mohun T. J., Brennan S., Dathan N., Fairman S. andGurdon J. B., 1984.Cell type specific activation of actin genes in the early amphibian embryo. Nature, 311: 716–721.

    Article  CAS  Google Scholar 

  • Nieuwkoop P. D. andFaber J., 1956.Normal table of Xenopus laevis(Daudin). North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Richter K., Grunz H. andDawid I. B., 1988.Gene expression in the embryonic nervous system of Xenopus laevis. Proc. Natl. Acad. Sci. USA, 85: 8090.

    Google Scholar 

  • Sharpe C. R., Fritz A., De Robertis E. M. andGurdon J. B., 1987.A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction. Cell, 50: 749–758.

    Article  CAS  Google Scholar 

  • Sharpe C. R., Pluck A. andGurdon J. B., 1989.XIF3, a Xenopus peripherin gene, requires an inductive signal for enhanced expression in anterior neural tissues. Development, 107: 701–714.

    CAS  Google Scholar 

  • Slack J. M. W., 1983.From egg to embryo. Cambridge Univ. Press, 241 pp.

  • Slack J. M. W., Darlington B. G., Heath J. K. andGodsave S. F., 1987.Mesoderm induction in early Xenopusembryos by heparin-binding growth factors. Nature, 326: 197–200.

    Article  CAS  Google Scholar 

  • Spemann H. undMangold H., 1924.Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch. mikrosk. Anat. Entw Mech., 100: 599–638.

    Google Scholar 

  • Sulllvan K. F., 1988.Structure and utilization of tubulin isotypes. Ann. Rev. Cell Biol., 4: 687–716.

    Google Scholar 

  • Sullivan K. F. andCleveland D. W., 1986.Identification of conserved isotype-defining variable region sequences for four vertebrate β-tubulin polypeptide classes. Proc. Natl. Acad. Sci. USA, 83: 4327–4331.

    Article  CAS  Google Scholar 

  • Sullivan K. F., Lau J. T. Y. andCleveland D. W., 1985.Apparent gene conversion between β-tubulin genes yields multiple regulatory pathways for a single β-tubulin polypeptide isotype. Mol. Cell. Biol., 5: 2454–2465.

    CAS  Google Scholar 

  • Valenzuela P., Quiroga M., Zaldivar J., Rutter W. J., Kirschner M. W. andCleveland D. W., 1981.Nucleotide and corresponding amino acid sequences encoded by α and β-tubulin mRNAs. Nature, 289: 650–655.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nella seduta del 12 maggio 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, F.D., Fascto, U., Sotgia, C. et al. Synthesis of β-tubulin mRNA in neural induction and specification. Rend. Fis. Acc. Lincei 1, 447–458 (1990). https://doi.org/10.1007/BF03001780

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001780

Key words

Navigation