Skip to main content
Log in

40 Gbit/s transmission: III–V integrated circuits for opto-electronic interfaces

Transmission à 40 Gbit/s: Circuits Intégrés III–V Pour Les Interfaces Optoélectroniques

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Increasing both wavelength count and bit rate per channel is presently implemented in order to improve the use of optical fiber bandwidth. This calls for suitable device structures and technologies for both optoelectronic transducers and associated driving electronics. For transmission at 40 Gbit/s per channel, Si and III–V microelectronic technologies are presently investigated with first successful demonstrations. In this paper the potential of GaAs and InP-based technologies to answer the 40 Gbit/s requirements and expected subsequent evolutions is addressed.

Résumé

Augmentations du nombre de longueurs d’onde et du débit par canal sont deux voies permettant d’utiliser au mieux la bande passante des fibres optiques. Cela demande des technologies et des composants adaptés, à la fois pour les composants optoélectroniques et pour leur électronique de commande. Dans le cas des transmissions à 40 Gbit/s par canal, les technologies microélectroniques Si et III–V sont actuellement étudiées, avec des premières démonstrations encourageantes. Dans cet article, on présente le potential des technologies GaAs et InP à satisfaire les besoins des circuits 40 Gbit/s et des évolutions futures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sitch (J.) Integrated circuits for fiber systems, (2002) Digest ofIEEE GaAs IC Symposium, pp. 19–22.

  2. Tsai (H.S.), Kopf (R.), Melendes (R.), Melendes (M.), Tate (A.), Ryan (R.), Hamm (R.), Chen (Y.K.) 90 GHz baseband lumped amplifier, (2000),Electron. Let.,36, pp. 1833–1834.

    Article  Google Scholar 

  3. Wooten (E.L.), Kissa (K.M.), Yi-Yan (A.), Murphy (E.J.), Lafaw (D.A.), Halemeier (P.F.), Maack (D.), Attanasio (D.V.), Fritz (D.J.), Mcbrien (G.J.), Bossi (D.E.), A review of Lithium Niobate modulators for fiber-optic communications systems, (2000),IEEE Journal Selec. Topics Quant. Electron.,6, pp. 69–82.

    Article  Google Scholar 

  4. Scavennec (A.),Giraudet (L.) Optical Photodetectors, in Fiber Optic Communication Devices,Springer 2001, Editors NorbertGrote, HerbertVenghaus.

  5. Green (M.M.), Momtaz (A.), Vakilian (K.), Wang (X.), Jen (H-C.), Chung (D.), Cao (J.), Carerosa (M.), Hairapetian (A.), Fujimori (I.), Cai (Y.) OC-192 transmitter in standard 0.18 µm CMOS, (2002),Techn. Digest IEEE ISSCC,1, pp. 248–249.

    Google Scholar 

  6. Razavi (B.) Prospects of CMOS technology for high-speed optical communication circuits, (2002),IEEE Journ. Solid-State Circuits,37, pp. 1135–1145.

    Article  Google Scholar 

  7. Johnson (E.O.) Physical limitations on frequency and power parameters of transistors, (1965),RCA Review,26, pp. 163–177.

    Google Scholar 

  8. Delage (S.) Heterojunction bipolar transistors for millimeter-wave applications: trends and achievements, (2001),Annales Télécom.,56, no 1–2, pp. 5–14.

    Google Scholar 

  9. Bollaert (S.), Cordier (Y.), Zaknoune (M.), Parenty (T.), Happy (H.), Cappy (A.), HEMT’s capability for millimeter-waves applications, (2001),Annales Télécom.,56, no 1–2, pp. 15–26.

    Google Scholar 

  10. Virk (R.S.),Camargo (E.),Hajji (R.),Parker (S.),Benelbar (R.),Notomi (S.),Ohnishi (H.) 40-GHzmmics for optical modulator driver applications, (2002),IEEE MTT-Symposium, pp. 91–94.

  11. Yuen (C.),Laursen (K.),Chu (D.),Mar (K.), 50 GHz high output voltage distributed amplifiers for 40 Gbit/seo modulator driver application, (2002),IEEE MTT-Symposium, pp. 481–484.

  12. Lefevre (R.),Mouzzanar (W.),Lestra (A.),Vuye (S.),Ferling (D.),Jorge (F.),Pillet (D.),Idler (W.), Double distributed GaAsp-hemt Ics for 40 Gbit/s high output voltage driver modules, (2001),Techn. Digest GaAs mantech, pp. 134–136.

  13. Nowotny (U.),Lao (Z.),Thiede (A.),Lienhart (H.),Hornung (J.),Kaufel (G.),Kohler (K.),Glorer (K.), 44 Gbit/s 4:1 multiplexer and 50 Gbit/s multiplexer in pseudomorphic AlGaAs/GaAs HEMT technology, (1998)IEEE ISCAS, Technical Dig. II, pp. 201–203.

  14. Sitch (J.), HBTS in telecommunications,Solid-State Electron., (1997) 41, pp. 1397–1405.

    Article  Google Scholar 

  15. Zampardi (P.J.), Runge (K.), Pierson (R.L.), Higgins (J.A.), Yu (R.) Mcdermott (B.T.), Pan (N.), Heterostructure-based high-speed/high-frequency electronic circuit applications,Solid-State Electron. (1999),43, pp. 1633–1643.

    Article  Google Scholar 

  16. Emura (K.) Technologies for making full use of high-speed IC performance in the development of 40 Gb/s optical receivers,Solid-State Electron. (1999),43, pp. 1613–1618.

    Article  Google Scholar 

  17. Amamiya (Y.),Suzuki (Y.),Kaanaka (M.),Hosoya (K.),Yamazaki (Z.),Mamada (M.),Takahashi (H.),Wada (S.),Kato (T.),Ikenaga (Y.),Tanaka (S.),Takeuchi (T.),Hida (H.) 40-Gbit/s optical receiver IC chipset — including a transimpedance amplifier, a differential amplifier, and a decision circuit — using GaAs-basedhbt technology, (2002), Proc.IEEE MTT-Symposium, pp. 87–90.

  18. Yamashita (Y.), Endoh (A.), Shinohara (K.), Hikosaka (K.), Matsui (T.), Hiyamizu (S.), Mimura (T.), Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTS with an utrahigh fT of 562 GHz, (2002),IEEE Electron. Dev. Letters,23, pp. 573–575.

    Article  Google Scholar 

  19. Yoneyama (M.), Miyamoto (Y.), Otsuji (T.), Toba (H.), Yamane (Y.), Ishibashi (T.), Miyazawa (H.), Fully electrical 40-Gbit/s TDM system prototype based on InP HEMT digital IC technologies, (2000),J. Ligthwave Technol.,18, pp. 34–43.

    Article  Google Scholar 

  20. Murata (K.), Sano (K.), Sugitani (S.), Sugahara (H.), Enoki (T.), 100 Gbit/s multiplexing and demultiplexing IC operations in InP HEMT technology, (2002)Electronics Let.,38, pp. 1529–1531.

    Article  Google Scholar 

  21. Enoki (T.), Arai (K.), Kohzen (A.), Ishii (Y.), Design and characteristics of InGaAs/InP composite-channel HFET’s, (1995) IEEE Trans. Electron. Dev.,42, pp. 1413–1417.

    Article  Google Scholar 

  22. Maher (H.), Decobert (J.), Falcou (A.), Le Pallec (M.), Post (G.), Nissim (Y.I.), Scavennec (A.) A triple channel HEMT on InP (camel HEMT) of large-signal high-speed aplications, (1999), IEEE Trans. Electron. Dev.,46, pp. 37–40.

    Article  Google Scholar 

  23. Rondeau (G.), Biblemont (S.), Decobert (J.), Post (G.) A monolithically integratedPIN-HEMT photoreceiver, (2000),Compound Semiconductors,6, pp. 83–84.

    Google Scholar 

  24. Meliani (C.), Post (G.), Rondeau (G.), Decobert (J.), Mouzzanar (W.), Dutisseuil (E.), Lefevre (R.), DC-92 GHz ultra broadband high gain InP HEMT amplifier with a 410 Hz gain-bandwidth product, (2002),Electron. Lett.,38, pp. 1175–1177.

    Article  Google Scholar 

  25. Jensen (J.F.),Hafizi (M.),Stanchina (W.E.),Metzger (R.A.),Rensch (D.B.), 39.5 GHz static frequency divider implemented in a AlInAs/GaInAs HBT technology, (1992), Digest IEEE GaAs IC Symposium, pp. 101–104.

  26. Ida (M.), Kurishima (K.), Watanabe (N.), Over 300 GHz fT and fMAX InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base, (2002) IEEE Electron. Dev. Let.,23, pp. 694–696.

    Article  Google Scholar 

  27. Lee (S.), Kim (H.J.), Urteaga (M.), Krishnan (S.), Wei (Y.), Dahlstrom (M.), Rodwell (M.), Transferred-substrate InP/InGaAs/InP double heterojunction bipolar transistors with fmax=425 GHz, (2001),Electron. Let.,37, pp. 1096–1098.

    Article  Google Scholar 

  28. Nguyen (N.X.),Fierro (J.),Peng (G.),Ly (A.),Nguyen (C.) Manufacturable commercial 4-inch InP hbt device technology, (2002),GaAs mantech Conf. Tech. Dig.

  29. Kim (Y.M.),Dahlstrom (M.),Lee (S.),Rodwell (M.J.W.),Gossard (A.C.), High-performance InP/In0.53Ga0.47As/InP double HBTS on GaAs substrates, (2002), IEEE Electron. Dev. Let., pp. 297–299.

  30. Sokolich (M.),Fields (C.),Shi (B.),Brown (Y.K.),Montes (M.),Martinez (R.),Kramer (A.R.),Thomas (S.),Madhav (M.), A low power 72.8 GHz static frequency divider implemented in AlInAs/InGaAshbt ic technology, (2000),Digest IEEE GaAs IC Symposium, pp. 81–84.

  31. Henderman (A.),Sovero (E.A.),Xu (X.),WITT (K.),sts-768 multiplexer with full rate output data retimer in InPhbt, (2002),Digest IEEE GaAs ICs Symposium, pp. 211–214

  32. Jagannathan (B.), Meghelli (M.), Rylyakov (A.V.), Groves (R.A.), Chinthakindi (A.K.), Schnabel (C.M.), Ahlgren, (D.A.), Freeman (G.G.), Stein (K.J.), Subbanna (S.), A 4.2 ps ECL ring-oscillator in a 285-GHz fMAX SiGe technology, (2002), IEEE Electron. Dev. Let.,23, pp. 541–543.

    Article  Google Scholar 

  33. Washio (K.),Ohue (E.),Hayami (R.),Kodama (A.),Shimamoto (H.),Miura (M.),Oda (K.),Suzumura (I.),Tominari (T.),Hashimoto (T.), Ultra-high-speed scaled-down self-alignedseg SiGe HBTS, (2002),Proc. iedm, pp. 767–770.

  34. Blayac (S.),Riet (M.),Benchimol (J.L.),Alexandre (F.),Berdaguer (P.),Kahn (M.),Pinquier (A.),Dutisseuil (E.),Moulu (J.),Kasbari (A.),Konczykowska (A.),Godin (J.),msi InP/InGaAsdhbt technology: beyond 40 Gbit/s circuits, (2002),Proc. iprm Conf., pp. 51–54.

  35. Kauffmann (N.), Blayac (S.), Abboun (M.), Andre (P.), Aniel (F.), Riet (M.), Benchimol (J-L.), Godin (J.), Konczykowska (A.), InP HBT driver circuit optimisation for high-speed ETDM transmission, (2001), IEEE J. Solid State Circ.,36, pp. 639–647.

    Article  Google Scholar 

  36. Konczykowska (A.), Jorge (F.), Kasbari (A.), Sahri (N.), Godin (J.), 48 Gbit/s InP DHBT MS-DFF with very low time jitter, (2002),Electron. Let.,38, pp. 1081–1083.

    Article  Google Scholar 

  37. Washio (K.), Ohue (E.), Oda (K.), Hayami (R.), Tanabe (M.), Shimamoto (H.), optimisation of characteristics related to the emitter-base junction in self-aligned SEG SiGe HBTS and their application in 72-GHz-dynamic frequency dividers, (2002), IEEE Trans. Electron Dev.,49, pp. 1755–1760.

    Article  Google Scholar 

  38. Meghelli (M.), Rylyakov (A.V.), Shan (L.) 50-Gbit/s SiGe BiCMOS 4:1 multiplexer and 1:4 demultiplexer for serial communication systems, (2002), IEEE J. Solid-State Circuits,37, pp. 1790–1794.

    Article  Google Scholar 

  39. Murata (K.),Sano (K.),Kitabayashi (H.),Sugitani (S.),Sugahara (H.),Enoki (T.), 100-Gbit/s logicics using 0.1-µm-gate-length InAlAs/InGaAs/InP HEMTS , (2002),Digest IEEE Int’l Electron Devices Meeting, pp. 937–939.

  40. Sano (K.),Murata (K.),Sugitani (S.),Sugahara (H.),Enoki (T.), 50-Gbit/s 4-bit multiplexer/demultiplexer using InP HEMTS , (2002),), IEEE GaAs IC Symposium Tech. Dig., pp. 207–210.

  41. Sano (K.),Murata (K.),Sugitani (S.),Sugahara (H.),Enoki (T.), 1.7-W 50-Gbit/s InP HEMT 4:1 multiplexer IC with a multi-phase clock architecture, (2002), IEEE GaAs IC Symposium Tech. Dig., pp. 159–162.

  42. Yoneyama (M.), Miyamoto (Y.), Otsuji (T.), Toba (H.), Yamane (Y.), Ishibashi (T.), Miyazawa (H.), Fully electrical 40-Gbit/s TDM system prototype based on InP HEMT digital IC technology, (2000),Journ. Lightwave Technol.,18, pp. 34–43.

    Article  Google Scholar 

  43. Murata (K.), Sano (K.), Sano (E.), Sugitani (S.), Enoki (T.), Fully monolithic integrated 43 Gbit/s clock and data recovery circuit in InP HEMT technology, (2001),Electron. Let.,37, pp. 1235–1237.

    Article  Google Scholar 

  44. Nakajima (H.), Sano (E.), Ida (M.), Yamahata (S.), 80 GHz 4:1 frequency divider IC using non-self-aligned InP/InGaAs heterostructure bipolar transistors, (2000)Electron. Let.,36, pp. 34–35.

    Article  Google Scholar 

  45. Ishii (K.), Murata (K.), Ida (M.), Kurishima (K.), Enoki (T.), Shibata (T.), Sano (E.), Very-high-speed selector IC using InP/InGaAs heterojunction bipolar transistors, (2002),Electron. Let.,38, pp. 480–481.

    Article  Google Scholar 

  46. Mattia (J.P.),Pullela (R.),Georgieu (G.),Baeyens, Y.),Tsai (H.S.),Chen (Y.K.),Dorschky (C.),Winkler Von Mohrenfels (T.),Reinhold (M.),Groepper (C.),Sokolich (M.),Nguyen (L.),Stanchina (W.), High-speed multiplexers: a 50 Gbit/s 4:1 MUX in InPhbt technology, (1999),Digest IEEE GaAs IC Symposium, pp. 189–192.

  47. Sano (E.),Nakajima (H.),Watanabe (N.),Yamahata (S.),Ishii (Y.), 40 Gbit/s 1:4 demultiplexer IC using InP-based heterojunction bipolar transistors,Electron. Let.,35, pp. 2116–2117.

  48. Nosaka (H.),Sano (E.),Ishii (K.),Ida (M.),Kurishima (K.),Enoki (T.),Shibata (T.), A fully integrated 40 Gbit/s clock and data recovery circuit using InP/InGaAs HBTS, (2002),Digest ieee mtt-Symposium, pp. 83–86.

  49. Huber (A.), Huber (D.), Bergamaschi (C.), Morf (T.), Jaeckel (H.), Lumped DC-50 GHz amplifier using InP/InGaAs HBTS, (1999),Electron. Lett.,35, pp. 53–54.

    Article  Google Scholar 

  50. Tsai (H.S.), Kopf (R.), Melendes (R.), Melendes (M.), Tate (A.), Ryan (R.), Hamm (R.), Chen (Y.K.), 90 GHz baseband lumped amplifier, (2000),Electron. Lett.,36, p.1833–1835.

    Article  Google Scholar 

  51. Baeyens (Y.), Pullela (R.), Mattia (J.P.), Tsai (H.S.), Chen (Y.K.), A 74-GHz bandwidth InAlAs/InGaAs-InP HBT distributed amplifier with 13-dB gain, (1999), IEEE Microwave and Guides Waves Lett.,9, pp. 461–463.

    Article  Google Scholar 

  52. Shigematsu (H.), Sato (M.), Hirose (T.), Watanabe (Y.) A 54-GHz distributed amplifiers with 6-Vpp output for a 40-Gbit/s LiNbO3 modulator driver, (2002) IEEE Journ. Solid-State Circuits,37, pp. 1100–1104.

    Article  Google Scholar 

  53. Braunsein (J.), Tasker (P.J.), Hulsmann (A.), Schlechtweg (M.), Kohler (K.), Bronner (W.), Haydl (W.), Very broadband distributed amplifier to 75 GHz, (1993)Electron. Lett.,29, pp. 851–852.

    Article  Google Scholar 

  54. Masuda (S.),Hirose (T.),Takahashi (T.),Nishi (M.),Yokokawa (S.),Iijima (S.),Ono (K.),Hara (N.),Joshin (K.), An over 110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission systems, (2002),Digest IEEE GaAs IC Symposium, pp. 99–102.

  55. Heins (M.S.),Campbell (C.F.,Kao (M.Y.),Muir (M.E.)Caroll (J.M.), A GaAsmhemt distributed amplifier with 300Ghz Gain-Bandwidth product for 40-Gbit/s optical applications, (2002), ),Digest ieee mtt-Symposium, pp. 1061–1064.

  56. Sato (M.),Shigematsu, Inoue (Y.),Arai (T.),Sawada (K.),Takahashi (T.),Makiyama (K.),Hirose (T.), 1,4-THZ Gain-bandwidth product InP-HEMTS preamplifier using an improved Cherry-Hoopertopology, (2002),Digest IEEE GaAs IC Symposium, pp. 167–170.

  57. Krishnamurthy (K.),Pullela (R.),Chow (J.),Xu (J.),Jaganathan (S.),Mensa (D.),Rodwell (M.), High gain 40 Gbit/s InPhbt drivers foreo/ea modulators, (2003),Proc. Optical Fiber Conference, paperfo7.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scavennec, A., Godin, J. & Lefevre, R. 40 Gbit/s transmission: III–V integrated circuits for opto-electronic interfaces. Ann. Télécommun. 58, 1485–1503 (2003). https://doi.org/10.1007/BF03001741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001741

Key words

Mots clés

Navigation