Skip to main content
Log in

Density matrices as polarization vectors

Matrici di densità come vettori di polarizzazione

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The concept of a density matrix originated about 1930 in the process of adapting to quantum mechanics the statistical descriptions of classical phenomena. A new light was cast on this concept when Felix Bloch formulated his NMR equation, inclusive of dissipative terms: This equation, ostensibly the time-dependent Schrödinger equation for a spin’s density matrix, governs in fact the expectation values of evolving observables, namely, the components of the spin’s polarization vector. It serves thus as the prototype for manifolds of diverse phenomena. The dissipation (or «relaxation») coefficients of Bloch’s equation and of its analogues were interpreted later by Zwanzig as the expectation values of information streaming away into unobserved sinks.

Riassunto

Il concetto di matrice di densità ebbe origine attorno al 1930 nel corso di adattare alla meccanica quantistica la descrizione statistica di fenomeni classici, ricevendo poi nuova luce dalla formulazione dell’equazione di risonanza nucleare da parte di Felix Bloch, arricchita di effetti dissipativi. Questa equazione, apparentemente l’equazione di Schrödinger per la matrice di densità della polarizzazione di uno spin, guida in realtà i valori medii di ogni quantità osservabile nel corso della sua evoluzione. Essa serve quindi come prototipo per molti e diversi fenomeni. I coefficienti di dissipazione (o «rilassamento») dell’equazione di Bloch vennero poi interpretati da Zwanzig come indici dell’informazione che sfugge per canali non osservati.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. von Neumann, Wahrscheinlichkeit theoretischer Aufbau in der Quantenmechanik. Göttinger Nachr., 245, 1927.

  2. J. von Neumann, Thermodynamik quantenmechaniker Gesamtheiten. Göttinger Nachr., 273, 1927.

  3. U. Fano,Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys., 29, 1957, 74.

    Article  Google Scholar 

  4. F. Bloch,Nuclear induction. Phys. Rev., 70, 1946, 460.

    Article  CAS  Google Scholar 

  5. U. Fano,Precession of a spinning particle in non-uniform fields. Phys. Rev., 133, 1964, B828.

    Article  Google Scholar 

  6. U. Fano,Pairs of two-level systems. Rev. Mod. Phys., 55, 1983, 855.

    Article  CAS  Google Scholar 

  7. S. Dattagupta,Relaxation Phenomena in Condensed Matter. Academic Press, Orlando 1987.

    Google Scholar 

  8. R. Zwanzig,Ensemble method in the theory of irreversibility. J. Chem. Phys., 33, 1960, 1338.

    Article  CAS  Google Scholar 

  9. H. Feshbach,A unified theory of nuclear reactions II. Ann. of Physics, 19, 1962, 287.

    Article  CAS  Google Scholar 

  10. U. Fano -A. R. P. Rau,Atomic Collisions and Spectra. Academic Press, Orlando 1986, sec. 8.6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presentata nella seduta del 3 novembre 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fano, U. Density matrices as polarization vectors. Rend. Fis. Acc. Lincei 6, 123–130 (1995). https://doi.org/10.1007/BF03001661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001661

Key words

Navigation