Skip to main content
Log in

On the time-domain scattering by a passive classical frequency dependent wedge-shaped region in a lossy dispersive medium

Sur la diffraction en régime non stationnaire dans un milieu dispersif à pertes par un secteur dièdre classique passif dont les caractéristiques dépendent de la fréquence

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

The time-scattering of an electromagnetic wave by a wedge-shaped region in a lossy medium, both with frequency dependent electric characteristics, is analyzed for plane wave and line source illuminations. New exact analytical expressions, satisfying explicitely the causality and allowing useful physical decompositions of the field, are obtained in these cases, using the particularities of the harmonic response in Sommerfeld-Maliuzhinets integral, especially original properties of the spectral function attached to it.

Résumé

La diffraction en régime non stationnaire d’une onde électromagnétique par un secteur dièdre dans un milieu à pertes, tous deux de caractéristiques électriques dispersives, est analysée pour des ondes incidentes plane et cylindrique (ligne source). Dans ces cas, on obtient des expressions analytiques exactes, satisfaisant explicitement la causalité et permettant d’intéressantes décompositions du champ, en utilisant certaines particularités de la représentation du champ en intégrale de Sommerfeld-Maliuzhinets en régime harmonique, particulièrement des propriétés originales de la fonction spectrale qui y est attachée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamb (H.)- On diffraction of a solitary wave.Proc. Lond. Math. Soc. (1910),8, no 2, pp. 422–437.

    Article  Google Scholar 

  2. Oberthettinger (F.). On diffraction and reflection of waves and pulses by wedges and corners.J. Res. Nat. Bur. Stand., Sec. D. (radio Propagat.) (1958),61, no 5, pp. 343–365.

    Google Scholar 

  3. Moshen (A.), Senior (T. B. A.). The impulse responses of a half-plane.IEEE Trans. AP (1973),21, pp. 254–255.

    Article  Google Scholar 

  4. Felsen (L. B.), Marcuvitz (N.). Radiation and scattering of waves.Englewood Cliffs, N.J., Prentice-Hall (1973).

    Google Scholar 

  5. Felsen (L. B.). Ddiffraction of pulsed field from an arbitrarily oriented electric or magnetic dipole by a perfectly conducting wedge.Siam J. Appl. Math. (1974),26, no 2, pp. 306–312.

    Article  Google Scholar 

  6. Veruttipong (T. W.). Time domain version of the uniform gtd.IEEE Trans. AP (1990),38, pp. 1757–1764.

    Google Scholar 

  7. Papadopoulos (V. M.). Pulse diffraction by an imperfectly reflecting wedge.J. Aust. Math. Soc. (1961),2, no 1, pp. 97–1106.

    Article  MATH  MathSciNet  Google Scholar 

  8. Sakharova (M. P.), Filippov (A. F.). The solution of non-stationary problem of the diffraction at an impedance wedge using tabulated functions.Zh. vychisl. Mat. Fiz. (1967),7, no 3, pp. 568–579.

    Google Scholar 

  9. Filippov (A. R). Study of the solution of non-stationary problem of plane wave diffraction at an impedance wedge.Zh. vychisl. Mat. Fiz. (1967),7, no 4, pp. 825–835.

    Google Scholar 

  10. Pelosi (G.), Manara (G.), Freni (A.). On the diffraction of a pulse by an impedance wedge.6th International Symposium on Antennas, JINA 90, Nice, France (Nov. 13–15, 1990).

    Google Scholar 

  11. Bernard (J. M. L.), Pelosi (G.), Manara (G.), Freni (A.). Time domain scattering by an impedance wedge for skew incidence.ICEAA Proceedings (1991), pp. 11–14.

  12. Bernard (J. M. L.), Pelosi (G.). Nouvelle formule d’inversion pour la fonction spectrale de Sommerfeld-Maliuzhinets et applications à la diffraction.Rev. Techn. Thomson-CSF (1993),25, no 4, pp. 1189–1200.

    Google Scholar 

  13. Maliuzhinets (G. D.). Inversion formula for the Sommerfeld integral.Sov. Phys. Dokl. (1958),3, pp. 52–56.

    Google Scholar 

  14. Maliuzhinets (G. D.). Excitation, reflection and emission of surface waves from a wedge with given face impedances.Sov. Phys. Dokl. (1958),3, pp. 752–755.

    Google Scholar 

  15. Bucci (O. M.), Franceschetti (G.). Electromagnetic scattering by a half plane with two face impedances.Radio Sci. (1976),11, pp. 49–59.

    Article  Google Scholar 

  16. Vaccaro (V. G.). The generalized reflection method in electro-magnetism.AEU (1980),34, pp. 493–500.

    Google Scholar 

  17. Vaccaro (V. G.). Electromagnetic diffraction from a right-angled wedge with soft conditions on one face.Opt. Acta (1981),28, pp. 293–311.

    MathSciNet  Google Scholar 

  18. Bernard (J. M. L.). On the diffraction of an electromagnetic skew incident plane wave by a non perfectly conducting wedge.Ann. Telecommun. (1990),45, no 1, pp. 30–39 (Erratum no 9–10, p. 577).

    Google Scholar 

  19. Maliuzhinets (G. D.). Certain generalizations of the reflection method in the theory of the diffraction of sinusoidal waves.Doctoral Dissertation, Phys. Inst. Acad. Sci., Fian, Moscow (1950).

    Google Scholar 

  20. Maliuzhinets (G. D.), Tuzhilin (A. A.). Plane acoustic wave diffraction at a semi-infinite thin elastic plate.Zh. vychisl. Mat. mat. Fiz. (1970),10, no 5, pp. 1210–1227.

    Google Scholar 

  21. Tuzhilin (A. A.). Diffraction of plane sound wave in an angular domain with absolutely hard and slippery face bounded by thin elastic plates.Different., Urav (1973),9, no 10, pp. 1875–1888.

    MathSciNet  Google Scholar 

  22. Bernard (J. M. L.). Diffraction by a metallic wedge covered with a dielectric material.Wave Motion (1987),9, pp. 543–561.

    Article  MATH  MathSciNet  Google Scholar 

  23. Borovikov (V. A.). Diffraction by a wedge with curved faces.Akust. Zh. (1989),25, no 6, pp. 825–835.

    MathSciNet  Google Scholar 

  24. Bernard (J. M. L.). Exact analytical solution for the diffraction at skew incidence by a class of wedge with absorbing material.Rev. Tech. Thomson-CSF (1989),20-21, pp. 523–527.

    Google Scholar 

  25. Bernard (J. M. L.). Diffraction par un dièdre à faces courbes non parfaitement conducteur.Rev. Tech. Thomson-CSF (1991),23, no 2, pp. 321–330.

    Google Scholar 

  26. Bernard (J. M. L.), Pelosi (G.). Diffraction par un dièdre avec variation d’impédance dépendant de la distance à l’arête.Ann. Telecommunic. (1992),47, no 9–10, pp. 421–423.

    Google Scholar 

  27. Tiberio (R.), Pelosi (G.), Manara (G.), Pathak (P. H.). High frequency scattering from a wedge with impedance faces illuminated by a line source. Part 1: Diffraction.IEEE Trans. AP (1989),37, no 2, pp. 212–218.

    MATH  MathSciNet  Google Scholar 

  28. Bernard (J. M. L.). Progresses on the diffraction by a wedge: transient solution for line source illumination, single face contribution to scattered field, and a new consequence of reciprocity on the spectral function.Rev. Tech. Thomson-CSF (1993),25, no 4, pp. 1209–1220.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, JM.L. On the time-domain scattering by a passive classical frequency dependent wedge-shaped region in a lossy dispersive medium. Ann. Télécommun. 49, 673–683 (1994). https://doi.org/10.1007/BF03001322

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001322

Key words

Mots clés

Navigation