Skip to main content
Log in

On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication

Analyse des procédés de conception des systèmes de transmission par fibre à haute densité de gestion de la dispersion pour des communications ultra-rapides

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

We present some theoretical and experimental results which suggest the possibility of constructing a non-empirical methodology of designing optical transmission systems with ultra high bit-rate per channel. Theoretically, we present an average dispersion decreasing densely dispersion-managed (A4dm) fiber system, which exhibits many advantages over the densely dispersion-managed fiber system, such as the possibility of transmitting chirp-free Gaussian pulses at 160 Gbit/s per channel over transoceanic distances, with a reduced energy and minimal intra-channel interaction. Experimentally we present generation of a 160-GHz picosecond pulse train at 1550 nm using multiple four-wave mixing temporal compression of an initial dual frequency beat signal in the anomalous-dispersion regime of a non-zero dispersion shifted fiber. A complete intensity and phase characterization of the pulse train by means of a frequency-resolved optical gating technique is achieved, showing generation of transform-limited pedestal-free Gaussian pulses.

Résumé

Nous présentons des résultats théoriques et expérimentaux qui suggèrent la possibilité de construire une méthodologie non empirique de conception de lignes à très haut débit par canal (≥ 160 Gbit/s). Théoriquement nous présentons la ligne de transmissiona4dm, où la gestion de la non-linéarité s’effectue en faisant décroître par palier la dispersion moyenne le long du pas d’amplification. Cette ligne démontre la possibilité de transmettre des impulsions gaussiennes initialement non chirpées à un débit de 160 Gbit/s sur des distances transocéaniques, avec un niveau d’énergie nettement plus petit que dans le cas de lignes à haute densité de gestion de la dispersion et sans gestion de la non-linéarité. Expérimentalement, nous présentons des résultats mettant en évidence la génération d’un train d’impulsions picosecondes à une fréquence de répétition de 160 GHz et à la longueur d’onde de 1550 nm. La technique mise en oeuvre repose sur la compression temporelle non linéaire d’un battement de deux fréquences injectées dans une fibre optique à dispersion décalée en régime de dispersion anormale. Le processus physique non linéaire à l’origine de la compression temporelle est un mélange à quatre ondes en cascades. Une caractérisation complète en intensité et en phase du train d’impulsions ainsi généré est réalisée à l’aide d’une technique d’autocorrélation résolue en fréquence. Cette caractérisation met clairement en évidence la génération d’un train d’impulsions gaussiennes en limite de Fourier et sans piédestal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moubissi (A. B.), Nakkeeran (K.), Tchofo Dinda (P.), Wabnitz (S.), Average dispersion decreasing densely dispersion-managed fiber transmission systems,IEEE Photon. Technol. Lett.,14, pp. 1041–1043 (2002).

    Article  Google Scholar 

  2. Yamamoto (T.), Yoshida (E.), Tamura (K. R.), Yonenaga (K.), Nakazawa (N.), 640-Gbit/s opticalTDM transmission over 92Km through a dispersion-managed fiber consisting of single-mode fiber and reverse dispersion fiber,IEEE Photon. Technol. Lett.,12, pp. 353–355 (2000).

    Article  Google Scholar 

  3. Gutty (F.), Pitois (S.), Grelu (Ph.), Millot (G.), Thomson (M. D.), Dudley (J. M.), Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber,Opt. Lett.,24, pp. 1389–1391 (1999).

    Article  Google Scholar 

  4. Dudley (J. M.), Thomson (M. D.), Gutty (F.), Pitois (S.), Grelu (Ph.), Millot (G.), Complete intensity and phase characterisation of optical pulse trains at terahertz repetition rates,Electron. Lett.,35, pp. 2042–2044 (1999).

    Article  Google Scholar 

  5. Dudley (J. M.), Gutty (F.), Pitois (S.), Millot (G.), Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,IEEE J. Quantum Electron.,37, pp. 587–594 (2001).

    Article  Google Scholar 

  6. Hellwarth (R.), Third-order optical susceptibilities of liquids and solids,Prog. Quantum Electron.,5, pp. 1–68 (1977).

    Article  Google Scholar 

  7. Lin (C.), Designing optical fiber for frequency conversion and optical amplification by stimulated Raman scattering and phase matched four-photon mixing,J. Opt. Commun.,4, pp. 22–9 (1983).

    Google Scholar 

  8. Stolen (R. H.), Gordon (J. P.), Tomlinson (W. J.), Haus (H. A.), Raman response function of silica-core fibers,J. Opt. Soc. Am. B,6, pp. 1159–1166 (1989).

    Article  Google Scholar 

  9. Zakharov (V. E.),Wabnitz (S.), Optical Solitons: Theoretical Challenges and Industrial Perspectives,Springer-Verlag (1998).

  10. Nakazawa (M.) Kubota (H.), Suzuki (K.), Yamada (E.), Recent progress in soliton transmission technology,Chaos,10, pp. 486–514 (2000).

    Article  Google Scholar 

  11. Maruta (A.), Yamamoto (Y.), Okamoto (S.), Suziki (A.), Morita (S.), Agata (A.), Hasegawa (A.), Effectiveness of densely dispersion-managed solitons in ultra-high speed transmission,Electron. Lett.,36, pp. 1947–1949 (2000).

    Article  Google Scholar 

  12. Richardson (L. J.), Forysiak (W.), Doran (W. J.), Trans-oceanic 160-Gbit/s single-channel transmission using short-period dispersion management,IEEE Photonics Technol. Lett.,13, pp. 209–211 (2001).

    Article  Google Scholar 

  13. Liang (A. H.), Toda (H.), Hasegawa (A.), High speed soliton transmission in dense periodic fibers.Opt. Lett.,24, pp. 799–801 (1999).

    Article  Google Scholar 

  14. Nijhof (N. H. B.), Doran (N. J.), Forysiak (W.), Knox (F. M.), Stable soliton-like propagation in dispersion-managed systems with net anomalous, zero and normal dispersion,Electron. Lett.,33, pp. 1726–1728 (1997).

    Article  Google Scholar 

  15. Nakkeeran (K.), Moubissi (A. B.), Tchofo Dinda (P.), Wabnitz (S.), Analytical method for designing dispersion-managed fiber systems,Opt. Lett.,20, pp. 1544–1546 (2001).

    Article  Google Scholar 

  16. Tchofo Dinda (P.), Moubissi (A. B.), Nakkeeran (K.), A collective variable approach for dispersion-managed solitons,J. Phys. A: Math. Gen.,34, pp. L103-L110 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  17. Tchofo Dinda (P.), Moubissi (A. B.), Nakkeeran (K.), Collective variable theory for solitons in optical fibers,Phys. Rev. E,63, pp. 016608/1–016608/15 (2001).

    Google Scholar 

  18. Berntson (A.), Doran (N. J.), Nijhof (N. H. B.), Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,Opt. Lett.,23, pp. 900–902 (1998).

    Article  Google Scholar 

  19. Yu (T.), Golovchenko (E. A.), Pilipetskii (A. N.), Menyuk (C. R.), Dispersion-managed soliton interactions in optical fibers,Opt. Lett.,22, pp. 793–795 (1997).

    Article  Google Scholar 

  20. Stentz (A. J.), Boyd (R. W.), Evans (A. F.), Dramatically improved transmission of ultrashort solitons through 40Km of dispersion-decreasing fiber,Opt. Lett.,20, pp. 1170–1172 (1995).

    Article  Google Scholar 

  21. Kawai (S.), Suzuki (K. I.), Iwatsuki (K.), Ultra-high speed long distance nonlinear waveform reshaping transmission using adiabatic soliton and narrowband sliding-frequency filter,Electron. Lett.,32, pp. 2170–2171 (1996).

    Article  Google Scholar 

  22. Georges (T.), Charbonnier (B.), Continuum generated by chromatic dispersion and power variations in periodically amplified soliton links,Electron. Lett.,21, pp. 1174–1175 (1996).

    Google Scholar 

  23. Tchofo Dinda (P.), Nakkeeran (K.), LabruyerE (A.), Suppression of soliton self-frequency shift by up-shifted filtering,Opt. Lett.,27, pp. 382–384 (2002).

    Article  Google Scholar 

  24. Martensson (J.), Bertson (A.), Dispersion-managed soliton for 160-Gbit/s data transmission,IEEE Photonics Technol. Lett.,13, pp. 666–668 (2001).

    Article  Google Scholar 

  25. Hasegawa (A.), Generation of a train of soliton pulses by induced modulational instability in optical fibers,Opt. Lett.,9, pp. 288–290 (1984).

    Article  Google Scholar 

  26. Tai (K.), Tomita (A.), Jewell (J. L.), Hasegawa (A.), Generation of subpicosecond solitonlike pulses at 0.3THz repetition rate by induced modulational instability,Appl. Phys. Lett.,49, pp. 236–238 (1986).

    Article  Google Scholar 

  27. Mamyshev (P. V.), Chernikov (S. V.), Dianov (E. M.), Generation of fundamental soliton trains for high-bitrate optical fiber communication lines,IEEE J. Quantum Electron.,27, pp. 2347–2355 (1991).

    Article  Google Scholar 

  28. Chernikov (S. V.), Richardson (D. J.), Laming (R. I.), Dianov (E. M.), Payne (D. N.), 114Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat signal in dispersion decreasing optical fiber,Appl. Phys. Lett.,63, pp. 293–295 (1993).

    Article  Google Scholar 

  29. Chernikov (S. V.), Taylor (J. R.), Multigigabit/s pulse source based on the switching of an optical beat signal in a nonlinear fibre loop mirror,Electron. Lett.,29, pp. 658–660 (1993).

    Article  Google Scholar 

  30. Chernikov, (s. v.), Taylor (J. R.), Kashyap (R.), Integrated all optical fibre source of multigigahertz soliton pulse train,Electron. Lett.,29, pp. 1788–1789 (1993).

    Article  Google Scholar 

  31. Chenikov (S. V.), Taylor (J. R.), Kashyap (R.), Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression,Electron. Lett.,30, pp. 433–435 (1994).

    Article  Google Scholar 

  32. Chernikov (S. V.), TAYLOR (J.R.) and KASHYAP (R.), Comblike dispersion-profiled fiber for soliton pulse train generation,Opt. Lett.,19, pp. 539–541 (1994).

    Article  Google Scholar 

  33. Chernikov (S. V.), Kashyap (R.), Guy (M. J.), Moodie (D. G.), Taylor (J. R.), Ultrahigh-bit-rate optical sources and applications,Phil. Trans. R. Soc. Lond. A,354, pp. 719–731 (1996).

    Article  Google Scholar 

  34. Swanson (E.A.), Chinn (S.R.), 40-GHz pulse train generation using soliton compression of a mach-zehnder modulator output,IEEE Photon. Technol. Lett.,7, pp. 114–116 (1995).

    Article  Google Scholar 

  35. Maruta (A.), Yamamoto (Y.), Okamoto (S.), Suzuki (A.), Morita (T.), Agata (A.), Hasegawa (A.), Effectiveness of densely dispersion managed solitons in ultra-high speed transmission,Electron. Lett.,36, pp. 1947–1949 (2000).

    Article  Google Scholar 

  36. Tadakuma (M.), Aso (O.), Namiki (S.), 104GHz 328fs soliton pulse train generation through a comb-like dispersion profiled fiber using short high nonlinearity dispersion fibers,Optical Fiber Communication Conference, 2000 Osa Technical Digest Postconference Edition,3, pp. 178–180 (2000).

    Google Scholar 

  37. Trillo (S.), Wabnitz (S.), Kennedy (T.A.B.), Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,Phys. Rev. A,50, pp. 1732–1747 (1994).

    Article  Google Scholar 

  38. Pitois (S.), Fatome (J.), Millot (G.), Generation of 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual frequency beat signal,Opt. Lett.,27, pp. 1729–1731 (2002).

    Article  Google Scholar 

  39. Agrawal (G. P.), Nonlinear Fiber Optics, 3rd Edition,New York Academic Press (2001).

    Google Scholar 

  40. Pelusi (M. D.), Matsui (Y.), Suzuki (A.), Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,IEEE J. Quatum Electron.,35, pp. 867–874 (1999).

    Article  Google Scholar 

  41. Schoof (A.), Grunert (J.), Ritter (S.), Hemmerich (A.), Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 105,Opt. Lett.,26, pp. 1562–1564 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchofo Dinda, P., Labruyere, A., Nakkeeran, K. et al. On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication. Ann. Télécommun. 58, 1785–1808 (2003). https://doi.org/10.1007/BF03001226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001226

Key words

Mots clés

Navigation