Skip to main content
Log in

Mouse chondrocytes in culture: New prospects for the study of bone formation in mammals

Condrociti di topo in cultura: Nuove prospettive per lo studio delta formazione dell’osso nei mammiferi

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Isolated chondrocytes from mouse ribs have been put in culture and maintained for several weeks, till confluence. They retain differentiation, and preliminary data of cells characterization and growth are reported. Electron microscope observations of the cellsin vitro grown are superimposable to those performed on chondrocytes derived from live animals. Mouse chondrocytes, grownin vitro, represent a promising system for the study of bone differentiation, growth and regeneration, also considering the several mutations affecting skeleton formation known in mice, like cn/cn (achondroplasia).

Riassunto

Condrociti isolati da costole di topo sono stati messi in coltura e mantenuti per diverse settimane, flno al raggiungimento della confluenza. In questo lavoro sono riportati dati prelirninari sulla loro caratterizzazione, stato di differenziamento e crescita. Le osservazioni al microscopio elettronico delle cellule cresciutein vitro sono sovrapponibili a quelle mostrate dai condrocitiin vivo. Le colture di condrociti di topo rappresentano un metodo utile per lo studio della diffèrenziazione, crescita e rigenerazione dell’osso, anche considerando le numerose mutazioni presenti nel topo che interessano la formazione dello scheletro, quali 1’acondroplasia (cn/cn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abbott -H. Holtzer,The loss of phenotypic traits by differentiated cells. III. The reversible behavior of chondrocytes in primary cultures. J. Cell Biol., 28, 1966, 473–487.

    Article  CAS  Google Scholar 

  2. J. Abbott -H. Holtzer,The loss of phenotypic traits by differentiated cells. V. The effect of 5-bromodeoxyuridine on cloned chondrocytes. Proc. Nat. Acad. Sci. USA, 59, 1968, 1144–1151.

    Article  CAS  Google Scholar 

  3. B. V. Oakes -C. J. Handley -F. Lisner -D. A. Lowther,An ultrastructural and biochemical study of high density primary cultures of embryonic chick chondrocytes. J. Embryol. Exp. Morphol., 38, 1977, 239–263.

    CAS  Google Scholar 

  4. B. M. Vertel -A. Dorfman,An immunohistochemical study of extracellular matrix formation during chondrogenesis. Dev. Biol., 62, 1978, 1–12.

    Article  CAS  Google Scholar 

  5. B. M. Vertel -A. Dorfman,Simultaneous localization of type II collagen and core protein sulfate proteoglycan in individual chondrocytes. Proc. Natl. Acad. Sci. USA, 76, 1979, 1261–1264.

    Article  CAS  Google Scholar 

  6. P. D. Benya -J. D. Shaffer,De-differentiated chondrocytes reexpress the differentiated collagen when cultured in agarose gels. Cell, 30, 1982, 215–224.

    Article  CAS  Google Scholar 

  7. K. von der Mark,Differentiation, modulation and de-differentiation of chondrocytes. Rheumatology, 10, 1986, 272–315.

    Google Scholar 

  8. N. C. Zanettt -M. Solursh,Effect of cell shape on cartilage differentiation. In:W. D. Stain -F. Bonner (eds.),Cell Shape: Determinants, Regulation, and Regulatory role. Academic Press, New York 1989, 291–337.

    Google Scholar 

  9. G. J. Gibson -S. L. Schor -M. E. Grant,Effects of matrix macromolecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gel. J. Cell. Biol., 93, 1982, 767–774.

    Article  CAS  Google Scholar 

  10. T. M. Schmld -M. E. Conrad,A inique low molecular weight collagen secreted by cultured chick embryo chondrocytes. J. Biol. Chem., 257, 1982, 12444–12450.

    Google Scholar 

  11. O. Capasso -G. Tajana -R. Cancedda,Location of 64K collagen producer chondrocytes in developing chick embryo tibiae. Mol. Cell. Biol., 10, 1984, 1163–1168.

    Google Scholar 

  12. T. M. Schmid -T. F. Linsenmayer,Immunohistochemical localization of short chain cartilage collagen (typo X) in avian tissues. J. Cell Biol., 100, 1985, 598–605.

    Article  CAS  Google Scholar 

  13. M. Solursch -K. Jensen -R. S. Reiter,Environmental regulation of type X collagen production by cultures of limb mesenchyme mesectoderm, and sternal chondrocytes. Dev. Biol., 117, 1986, 90–101.

    Article  Google Scholar 

  14. R. Mayne -M. S. Vail -P. M. Mayne -E. J. Miller,Changes in the type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc. Natl. Acad. Sci. USA, 73, 1976, 1674–1678.

    Article  CAS  Google Scholar 

  15. P. D. Benya -S. R. Padilla -M. E. Nimni,Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15, 1978, 1313–1321.

    Article  CAS  Google Scholar 

  16. A. L. HoRwrrz -A. Dorfman,The growth of cartilage cells in soft agar and liquid suspension. J. Cell. Biol., 45, 1970, 434–438.

    Article  Google Scholar 

  17. G. J. Gibson -B. W. Beaumont -M. H. Flint,Synthesis of a low molecular weight collagen by chondrocytes from the presunptive calcification region of embryonic chick sterna: the influence of culture with collagen gels. J. Cell. Biol., 99, 1984, 208–216.

    Article  CAS  Google Scholar 

  18. A. L. Althouse -M. Beck -E. Griffey -J. Sanford -K. Arden -M. A. Machado -W. A. Horton,Expression of the human chondrocyte phenotype in vitro. In Vitro Cell. Devel. Biol., 25, 1989, 659–668.

    Article  Google Scholar 

  19. C. Bassleer -Ph. Gysen -J. M. Foilart -R. Bassleer -P. Franchimont,Human chondrocytes in tridimensional culture. In Vitro Cell. Devel. Biol., 22, 1986, 113–119.

    Article  CAS  Google Scholar 

  20. P. W. Lane -M. M. Dickie,Three recessive mutations producing disproportionate dwarfing in mice: achondroplasia, brachymorph and stubby. J. Hered., 59, 1968, 300–308.

    CAS  Google Scholar 

  21. P. W. Lane,Achondroplasia (cn). Mouse News Lett., 49, 1973, 33.

    Google Scholar 

  22. B. V. Konyukhov -Y. V. Paschin,Experimental study of the achondroplasia gene effects in the mouse. Acta Biol. Acad. Sc. Hungar., 18, 1967, 285–294.

    CAS  Google Scholar 

  23. B. V. Konyukhov -Y. V. Paschin,Abnormal growth of the body, internal organs and skeleton in achondroplastic mice. Acta Biol. Acad. Sc. Hungar., 21, 1970, 347–354.

    CAS  Google Scholar 

  24. D. L. Rimoin -G. N. Hughers -R. L. Kaufman -R. E. Rosenthal -W. H. MacAllister -R. Silberberg,Endochondral ossification in achondroplastic dwarfism. New Engl. J. Med., 283, 1970, 728–735.

    Article  CAS  Google Scholar 

  25. D. L. Rimoin -W. H. MacAllister -R. M. Saldino -J. G. Hall,Histological appearances of some types of congenital dwarfism. Progr. Pediat. Radiol., 4, 1973, 68–92,

    Google Scholar 

  26. R. Silberberg -P. Lesker,Skeletal growth and development of achondroplastic mouse. Growth, 39, 1975, 17–33.

    CAS  Google Scholar 

  27. E. Bonucci -A. Del Marco -B. Nicoletti -P. Petrinelli -L. Pozzi,Histological and histochemical investigation of achondroplastic mice: a possible model of human achondroplasia. Growth, 40, 1976, 241–251.

    CAS  Google Scholar 

  28. A. Pedrini-Mille -V. Pedrini,Studies of human iliac crest cartilage. III. Protein polysacchandes in human achondroplasia. Calcif. Tissue Res., 8, 1970, 106–113.

    Article  Google Scholar 

  29. T. H. Shepard,Organ culture studies of achondroplastic rabbit cartilage: evidence for a metabolic defect in glucose utilization. J. Embriol. Exp. Morphol., 25, 1971, 347–363.

    CAS  Google Scholar 

  30. G. L. Bargman -B. Mackler -T. H. Shepard,Studies of oxidative energy deficiency. I. Achondroplasia in the rabbit. Arch. Biochem. Biophys., 150, 1972, 137–146.

    Article  CAS  Google Scholar 

  31. E. Bonucci -E. G. Gherardi -A. Del Marco -B. Nicoletti -P. Petriinelli,An electron microscope investigation of cartilage and bone in achondroplastic (cn/cn) mice. J. Submicr. Cytol., 9, 1977, 229–306.

    Google Scholar 

  32. A. Del Marco,Observations of growth plate development in achondroplastic (cn/cn) mice. Reprod. Nutr. Develop., 21, 1981, 1025–1031.

    Article  Google Scholar 

  33. J. A. Maynard -E. G. Ippolito -I. V. Ponseti -M. R. Mickelson,Histo chemistry and ultrastructure of the growth plate in achondroplasia. J. Bone Joint Surg., 63., 1981, 969–979.

    CAS  Google Scholar 

  34. B. Mackler -R. Grace -K. A. Davis -T. H. Shepard -J. G. Hall,Studies of human achondroplasia: oxidative metabolism in tissue culture cells. Teratology, 33, 1986, 9–13.

    Article  CAS  Google Scholar 

  35. B. Mackler -T. H. Shepard,Human achondroplasia: defective mitochondrial oxidative energy metabolism may produce the pathophysiology. Teratology, 40, 1989, 571–582.

    Article  CAS  Google Scholar 

  36. F. E. Stockdale -J. Abbott -S. Holtzer -H. Holtzer,The loss of phenotypic traits by differentiated cells. II. Behaviour of chondrocytes and their progeny in vitro. Develop. Biol., 7, 1963, 293–300.

    Article  CAS  Google Scholar 

  37. H. G. Coon,Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc. Nat. Acad. Sci. USA, 55, 1966, 66–73.

    Article  CAS  Google Scholar 

  38. W. K. Manning -M. Bonner,Isolation and culture of chondrocytes from human adult articular cartilage. Arthritis Reum., 10, 1967, 235–239.

    Article  CAS  Google Scholar 

  39. R. G. Ham -G. G. Sattler,Clonal growth of differentiated rabbit cartilage cells. J. Cell. Physiol., 72, 1968, 109–114.

    Article  CAS  Google Scholar 

  40. R. D. Cahn,Factors affecting inheritance and expression of differentiation: some methods of analysis. In:H. Ursprung (ed.),The Stability of The Differentiated State. Springer-Verlag New York inc., 1968, 58–84.

    Google Scholar 

  41. S. Chacko -J. Abbot -H. Holtzer,Loss of phenotypic traits by differentiated cells. VI. Behave of the progeny of a single chondrocyte. J. Exp. Med., 130, 1969, 417–430.

    Article  CAS  Google Scholar 

  42. J. Glowacki -E. Trepman -J. Folkman, Cell shape and phenotypie {ie17-1} in chondrocytes Proc. Soc. Exp. Biol. Med., 172, 1983, 93–98.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nella seduta del 12 giugno 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argentin, G., Cicchetti, R., Sarperi, A. et al. Mouse chondrocytes in culture: New prospects for the study of bone formation in mammals. Rend. Fis. Acc. Lincei 4, 9–17 (1993). https://doi.org/10.1007/BF03001179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001179

Key words

Navigation