Skip to main content
Log in

The FDTD method applied to the study of mjcrostrip patch antennas with a biased ferrite substrate

MÉthode des diffÉrences finies dans le domaine temporel appliquÉe À l’Étude d’antennes plaques sur substrat en ferrite polarisÉ

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

In communication systems microstrip patch antennas must operate in circular polarization. To fulfill this requirement, a new type of antenna is studied microstrip patch antennas printed on a ferrite substrate, which can naturally generate circular polarization with only one feed point. Few theoretical methods allow the study of rectangular microstrip patch antennas on ferrite substrate. An original method based on a finite difference time domain approach is introduced in this paper. After a description of this numerical method, a validation is made, then some characteristics of such antennas are given.

Résumé

L’introduction des antennes microrubans dans les systèmes de communication nécessite des éléments capables de fonctionner en polarisation circulaire. Afin de pouvoir générer une telle polarisation, de nouveaux types d’antennes sont étudiés. En particulier, les antennes plaques sur un substrat ferrite polarisé per mettent de générer naturellement de la polarisation circulaire. Peu de méthodes permettent une étude d’antennes de forme rectangulaire de ce type. Aussi une technique originale d’analyse par une méthode aux différences finies est proposée dans cet article. Aprés une présentation de la méthode, une validation a été effectuée. De même, quelques résultats sur les caractéristiques de telles antennes sont données.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. James (J. R.), Hall (P. S.). Handbook of microstrip antennas. Peter Peregrinus LTD (1989).

  2. Bahl (I. J.), Bhartia (P.). Microstrip antennas. Artech House (1980).

  3. James (J. R.), Hall (P. S.), Wood (C.). Microstrip antenna theory and design. IEE Electromagnetic Waves Series 12, Peter Peregrinus LTD (1981).

  4. Deschamps (G. A.). Microstrip microwave antennas. 3rd USAF, Symposium on Antennas (1953).

  5. Das (N.), Chasserjee (T. T.). Quaterwave microstrip antenna on a ferrimagnetic substrate.Electronics Letters (juin 1981),17, no 13, pp. 441–442.

    Article  Google Scholar 

  6. Das (N.), Mishra (R. K.), Pattnaik (S. S.). Elliptical microstrip antenna on ferrite substrate.Electronics Letters (oct. 1990),26, no 22, pp. 1905–1907.

    Google Scholar 

  7. Pozar (D.). Radiation and scattering characteristics of microstrip antennas on normally biased ferrite substrate.IEEE Trans. AP (sept. 1992),40, no 8, pp. 1084–1092.

    Google Scholar 

  8. Taflove (A.), Brodwin (M. E.). Numerical solution of stadystate electromagnetic scattering problems using the time domain dependent Maxwell’s equation.IEEE Trans. MTT (août 1975),19, no 8, pp. 623–630.

    Article  Google Scholar 

  9. Holland (R.). Threde: a three field emp coupling and scattering code.IEEE Trans. NS (dec. 1977),24, no 6, pp. 2416–2422.

    Article  MathSciNet  Google Scholar 

  10. Merewether (M. E.). Transient current induced on a metallic body of revolution by an electromagnetic pulse.IEEE Trans. EMC (mai 1971),13, pp. 44–47.

    Google Scholar 

  11. Kunz (K. S.). A three-dimensional finite difference solution of the external response of an aircraft to a complex transient EM environment: part I : the method and it is implantation.IEEE Trans. EMC (mai 1978),20, no 2, pp. 328–333.

    MathSciNet  Google Scholar 

  12. Reineix (A.), Jecko (B.). Analysis of microstrip patch antennas on a dielectric substrate using the finite difference time domain method.IEEE Trans. AP (nov. 1989),37, no 11, pp. 1361–1369.

    Google Scholar 

  13. Wu (Ch.), Wu (K. L.), Bi (Z. Q.), Litva (J.). Accurate characterization of planar printed antennas using finite difference time domain method.IEEE Trans. AP (mai 1992),40, no 5, pp. 526- 534.

    Google Scholar 

  14. Yee (K. S.). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media.IEEE Trans. AP (mai 1966),14, pp. 302–307.

    Article  Google Scholar 

  15. Lax-Button. Microwave ferrites and ferrimagnetics. Mac Graw Hill.

  16. Sooho (R. F.). Theory and application of ferrites. Practice Hall International EMC (1960).

  17. Reineix (A.), Monedère (Th.), Jecko (F.). Ferrite analysis using the FDTD method.Microwave and Optical technology letters,15, no 13, pp. 685–686.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reineix, A., Melon, C., MonÉdiÈre, T. et al. The FDTD method applied to the study of mjcrostrip patch antennas with a biased ferrite substrate. Ann. Télécommun. 49, 137–142 (1994). https://doi.org/10.1007/BF02999476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02999476

Key words

Mots clés

Navigation