Skip to main content
Log in

Matched absorbing medium techniques for full-wave tlm simulation of microwave and millimeter-wave components

Technique des couches absorbantes adaptées, appliquées à l’analyse rigoureuse des composants microondes et en bande millimétrique, parla méthode tlm

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

This paper investigates the absorbing layer techniques for three-dimensional transmission-line matrix (3d-tlm) simulations. Applications are the full-wave analysis of structures such as microwave and millimeter-wave circuits open to free space. Two approaches are presented, namely the matched layer (ml) and the perfectly matched layer (pml) technique which is used for general cases. For the ml technique, which is efficient for matching guides operating in a quasi-TEM condition, a comparison of the different tlm condensed node is carried out. Concerning the more general case of the pml technique, the theoretical development of a new general three-dimensional (3d) tlm condensed cell is presented. Results pertaining to the characterization of planar circuits are compared with other solutions or measurements. It is found that a proposed unified approach, which includes the tlm simulation for matched layer media, yields very good performance in terms of the absorbing boundary condition (abc).

Résumé

Cet article présente des techniques des milieux absorbants pour la modelisation par la methode de la matrice des lignes de transmission tridimensionnelle (3d-tlm). Les applications sont l’analyse électromagnétique de circuits microondes et millimétriques ouverts sur l’espace libre. Les deux approches discutées utilisent les milieux adaptés (ml) et les couches parfaitement adaptées (pml), ces dernières étant utilisées pour le cas général. La technique ml, qui est efficace pour l’adaptation de guides opérant en modes quasi statiques, est étudiée dans le cas de différents types de cellules tlm condensées. Pour la simulation des milieux pml applicables aux cas plus généraux, le développement théorique d’une nouvelle cellule tlm tridimensionnelle est présenté. Dans le cadre de caractérisation de discontinuités en technologic plaquée, des résultats de simulations sont comparés avec des solutions trouvées par d’autres méthodes ou la mesure. On trouve que l’approche unifiée proposée donne de très bonnes performances en termes de conditions absorbantes aux limites (abc).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

o|Reference

  1. Johns (P. B.). A symmetrical condensed node for the TLM method.IEEE Trans. Microwave Theory Tech.,35, no 4, pp. 370–377 (1987).

    Article  MathSciNet  Google Scholar 

  2. Hoefer (W. J. R.). The transmission line matrix method theory and applications.IEEE Trans. Microwave Theory Tech.,33, no 10, pp. 882–893 (1985).

    Article  Google Scholar 

  3. Eswarappa (Ch.), Hoefer (W. J. R.). Absorbing boundary conditions for time-domainTlm andFdtd analysis of electromagnetic structures.Electromagnetics,16, no 5, pp. 489–519 (1996).

    Article  Google Scholar 

  4. Morente (J. A.), Porti (J. A.), Khalladi (M.). Absorbing boundary conditions for theTlm method.IEEE Trans. Microwave Theory Tech.,40, no 11, pp. 2095–2099 (1992).

    Article  Google Scholar 

  5. Chen (Z.), Ney (M. M.), Hoefer (W. J. R.). Absorbing and connecting boundary conditions for theTlm method.IEEE Trans. Microwave Theory Tech.,41, no 11, pp. 2016–2024 (1993).

    Article  Google Scholar 

  6. Le Maguer (S.),Pena (N.),Ney (M.). Étude des couches adaptées pour le calcul des paramètres S de structures planaires enTlm 3D.numelec 97, Lyon, (Mar. 1997).

  7. Berenger (J. P.). A perfectly matched layer for the absorption of electromagnetic waves.J. Comput. Phys.,114, no 2, pp. 110–117 (1994).

    Article  MathSciNet  Google Scholar 

  8. Berenger (J. P.). A perfectly matched layer for free-space simulation in finite-difference computer codes.Ann. Télécommunic.,51, no 1–2, pp. 39–46 (1996).

    Google Scholar 

  9. Eswarappa (Ch.), Hoefer (W. J. R.). Implementation of Bérenger absorbing boundary conditions in TLM by interfacing FDTD perfectly matched layers.Electronic Letters,31, no 15, pp. 1264–1266 (1995).

    Article  Google Scholar 

  10. Pena (N.), Ney (M.). Absorbing boundary conditions using perfectly matched layer (pml) technique for three-dimensional TLM simulations.IEEE Trans. Microwave Theory Tech.,45, no 10 (1997).

    Google Scholar 

  11. Pena (N.), Ney (M.). A new TLM Node for Bérenger’s perfectly matched layer.IEEE Microwave and Guided Wave Letters,6, no 11, pp. 410–412 (1996).

    Article  Google Scholar 

  12. Veihl (J. C.), Mittra (R.). An efficient implementation of Bérenger’s perfectly matched layer (pml) for finite-difference time-domain mesh truncation.IEEE Microwave and Guided Wave Letters.,6, no 11, pp. 94–96 (1996).

    Article  Google Scholar 

  13. Zhao (L.), Cangellaris (A. C.). A general approach for the development of unsplit-field time-domain implementations of perfectly matched layer for FDTD grid truncation.IEEE Microwave and Guided Wave Letters,6, no 5, pp. 209–211 (1996).

    Article  Google Scholar 

  14. Pena (N.), Ney (M). A general formulation of a three-dimensionalTlm condensed node with the modeling of electric and magnetic losses and current sources.12th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, pp. 262–269 (1996).

  15. Trenkic (V.). Efficient Computation Algorithms forTlm.First Int. Workshop on Tlm Modeling, pp. 77–80 (1995).

  16. Scaramuzza (R.), Lowery (A. J.). Hybrid symmetrical condensed node for theTlm method.Electronics Letters,26, no 23, pp. 1947–1948 (1990).

    Article  Google Scholar 

  17. Trenkic (V.).Christopoulos (C.), Benson (T. M.). Theory of the symmetrical super-condensed node for theTlm method.IEEE Trans. Microwave Theory Tech. 43, no. 6, pp. 1342–1348 (1995).

    Article  Google Scholar 

  18. Ney (M. M.). Modeling of highly conducting boundaries withTlm.electromagnetics,16, no 5, pp. 521–535 (1996).

    Article  Google Scholar 

  19. Berenger (J. P.). Calcul de la diffraction à l’aide d’une méthode aux différences finies.Actes du colloque Cem, Trégastel, France (1983).

  20. Bahr (A.), Lauer (A.), Wolff (I.). Application of the pml absorbing condition to theFdtd analysis of microwave circuits.IEEE MTT-S Digest,TU-1B, pp. 27–30 (1995).

    Google Scholar 

  21. Marcuvitz (N.). Waveguide handbook,MA:Boston Technical Publishers (1964).

    Google Scholar 

  22. Herring (J. L.),Hoefer (W. J. R.). Accurate modelling of zero thickness septa with the symmetrical condensed node.First Int. Workshop on TLM Modeling, pp. 237–240 (1995).

  23. Sheen (D.), Ali (S. M.), Abouzahra (M.), Kong (J.). Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits.IEEE Trans. Microwave Theory Tech.,38, no 7, pp. 849–857 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Maguer, S., Peña, N. & Ney, M. Matched absorbing medium techniques for full-wave tlm simulation of microwave and millimeter-wave components. Ann. Télécommun. 53, 115–129 (1998). https://doi.org/10.1007/BF02998569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02998569

Key words

Mots clés

Navigation