Skip to main content
Log in

An iterative solution of the combined field integral equation

Une méthode itérative basée sur l’equation intégrale des champs combinés (CFIE)

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

An iterative method based on the combined field integral equation (cfie) [1] is presented in this paper. The cfie is solved in an iterative way, avoiding the inversion of the method of moments (mom) matrix. The method has been applied to several problems showing its accuracy and fast convergence properties, mainly for large bodies.

Résumé

On présente une méthode itérative basée sur l’équation integrale des champs combinés (cfie). La cfie est resolue de maniere iterative, en evitant I'inversion de la matrice de la méthode des moments (mom). La méthode proposée a été appliquée à plusieurs problèmes. Les résultats obtenus démontrent la précision et la rapidité de convergence de cette méthode, surtoutpour les grands objets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

o|Reference

  1. Mautz (R.), Harrington (R. F.). H-field, E-field and combinedfield solutions for conducting bodies of revolution.AEU, (1978),32, pp. 159–164.

    Google Scholar 

  2. Bhattacharyya (A. K.). High-frequency electromagnetic techniques: recent advances and applications.John Wiley and Sons (1995).

  3. Ko (W. L.), Mittra (R. A.). New approach based on combination of integral equation and asymptotic techniques for solving electromagnetic scattering problems.IEEE Trans. Ant. And Propagat. (1977),25, pp. 187–197.

    Article  MathSciNet  Google Scholar 

  4. Sarkar (T. K.), Siarkiewicz (K. R.), Stratton (R. F.). Survey of numerical methods for solution of large systems of linear equations for elctromagnetic field problems.IEEE Trans. Ant. propagat. (1981)29, pp. 847–856.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bojarski (N. N.). The k-space formulation of the scattering problem in the time domain.Acoustic Society of America. (1982),72, pp. 570–584.

    Article  MATH  Google Scholar 

  6. Sarkar (T. K.). The application of the conjugate gradient method for the solution of operator equations arising in electromagnetic scattering from wire antennas.Radio Science. (1984),19, pp. 1156–1172.

    Article  Google Scholar 

  7. Van den Berg (P. M.). Iterative computational techniques in scattering based upon the integrated error criterion.IEEE Trans. Ant. Propagat. (1984),32, pp. 1063–1071.

    Article  Google Scholar 

  8. Sarkar (T. K.), Arvas (E.). On a class of finite step iterative methods (conjugate directions) for the solution of an operator equation arisisng in electromagnetics.IEEE Trans. Ant. Propagat. (1985),33, pp. 1058–1066.

    Article  Google Scholar 

  9. Kleinman (R. E.), Roach (G. F.), Van den Berg (P. M.). A convergent born series for large refractive indices.J. Optical Society of America, Series A. (1990),7, pp. 890–897.

    Article  Google Scholar 

  10. Kleinman (R. E.).Roach (G. F.), Schuetz (L. S.), Shirron (J.), Van Den Berg (P. M.). An over-relaxation method for the iterative solution of integral equations in scattering problems.Wave Motion, (1990),12, pp. 161–170.

    Article  MATH  MathSciNet  Google Scholar 

  11. Van der Berg (P. M.). Iterative schemes based on minimization of a uniform error criterion. Chap. 2 ofAplication of conjugate gradient methods to electromagnetics and signal analysis, PIER 5, Progress in Electromagnetics Research, T. K. Sarkar, ed.Elsevier, (1991).

  12. Kleinamn (R. E.), Van den Berg (P. M.). Iterative methods for solving integral equations. Chap. 3 ofAplication of conjugate gradient methods to electromagnetics and signal analysis, PIER 5, Progress in Electromagnetics Research, T. K. Sarkar, ed.Elsevier, (1991).

  13. Sarkar (T. K.). The conjugate gradient method as applied to electromagnetic field problems.IEEE-AP Newsletter. (1986),28, pp. 5–14.

    Google Scholar 

  14. Sarkar (T. K.). On the application of the generalized biconjugate gradient method.J. Electromagnetic Waves and Applications. (1987),1, no 3, pp. 223–242.

    Article  Google Scholar 

  15. Catedra (M. F.), Torres (R. P.), Basterrechea (J.) Gago (E.). The GC-FFT method: application of signal processing techniques to electromagnetics.Artech House, (1995), Norwood, MA.

  16. Kaye (M.), Murthy (P. K.), Thele (G. A.). An iterative method for solving scattering problems.IEEE Trans. Ant. Propagat. (1985),33, pp. 1272–1279.

    Article  Google Scholar 

  17. Obelleiro (F.), Rodriguez (J. L.) Burkholder (R. J.). An iterative physical optics approach for analyzing the EM scattering by large open-ended cavities.IEEE Trans. Ant. Propagat. (1993),43, pp. 356–361.

    Article  Google Scholar 

  18. Obelleiro (F.), Rodriguez (J. L.), Pino (A. G.). A progressive physical optics (ppo) method for computing the electromagnetic scattering of large open-ended cavities.Microwaves and Optical Technology Letters. (1997),14, no 3, pp. 166–169.

    Article  Google Scholar 

  19. RodrIguez (J. L.), Obelleiro (F.), Pino (A. G.). Iterative solutions of the MFE for computing the electromagnetic scattering of large open-ended cavities.IEE Proceedings Microwaves, Antennas and Propagation (1998).

  20. Kim (T. J.), Thiele (G. A.). A hybrid diffraction technique-General theory and applications.IEEE Trans. Ant. Propagat, (Sep. 1982),30, no 5, pp. 888–897.

    Article  Google Scholar 

  21. Tew (M. D.) Tsai (L. L.). Use of a priory knowledge in moment method solutions.GAP INTLSYMP. Williamsburg (1972).

  22. James (R. M.). A contribution to scattering calculation for small wavelengths-the high frequency panel method.IEEE Trans. Ant. Propagat. (1990),38, pp. 1625–1630.

    Article  Google Scholar 

  23. Aberegg (K. R.), Peterson (A. F.). Application of the integral equation asymptotic phase method to two-dimensional scattering.IEEE Trans: Ant. Propagat. (1995),43, no 5, pp. 534–537.

    Article  Google Scholar 

  24. Kastner (R.). A method of successive images for conducting scatters.IEEE APS International Symposium. Chicago, Illinois. (1992).

  25. Kastner (R.). Convergence of successive images with relaxation.URSI Radio Science Meeting. Ann Arbor, MI. (1993).

  26. Kastner (R.). Rapid approximation of conducting problems using a dual image approach.Microwave and Optical Technology Letters. (1994),7, no 11, pp. 486–489.

    Article  Google Scholar 

  27. Canning (X.). The impedance matrix localization (iml) method for moment-method calculations.IEEE Ant. propagat Magazine. (1991),39, pp. 1545–1552.

    Article  Google Scholar 

  28. Steinberg (B. Z.), Leviatan (Y.). On the use of wavelet expansions in the method of moments.IEEE Ant. propagat. (1993),41, no 4, pp. 610–619.

    Article  Google Scholar 

  29. Coifman (R.), Rohklin (V.), Wandzura (S.). The fast multipole method for the wave equation: A pedestrian prescription.IEEE Ant. propagat Mag. (1993),35, pp. 7–12.

    Article  Google Scholar 

  30. Burkholder (R. J.). High-frequency asymptotic acceleration of the fast multipole method.Radio Science. (1996),31, no 5, pp. 1199–1206.

    Article  Google Scholar 

  31. Umashankar (R.), Nimmagadda (S.), Taflove (A.). Numerical analysis of electromagnetic scattering by electrically large objects using spatial decomposition technique.IEEE Tram. Ant. propagat. (1992),40, no 8, pp. 867–877.

    Article  Google Scholar 

  32. Michelssen (E.), Boag (A.). A multilevel matrix decomposition algorithm for analyzing scattering from large structures.IEEE Trans. Ant. propagat. (1996), no 8, pp. 1086–1093.

  33. Harrington (R. F.), Field computation by moment methods,MacMillan (1968).

  34. Golub (G. H.) Van Loan (C. F.), Matrix computations,The Johns Hopkins University Press, (1989).

  35. Andreasen (G.). Scattering from bodies of revolution.IEEE Trans. Ant. propagat. (1965),13, pp. 303–310.

    Article  Google Scholar 

  36. Mautz (R.) Harrington (R. F.). Radiation and scattering from bodies of revolution.Appl. Sci. Res. (1969),20, pp. 405–435.

    Article  Google Scholar 

  37. Glisson (W.) Wilton (D. R.). Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces.IEEE Trans. Ant. propagat. (1980),28, pp. 593–603.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obelleiro, F., Rodríguez, J.L. & García pino, A. An iterative solution of the combined field integral equation. Ann. Télécommun. 53, 85–94 (1998). https://doi.org/10.1007/BF02998566

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02998566

Key words

Mots clés

Navigation