Skip to main content
Log in

Information of deterministic functions and quantum information of non probabilistic matrices A unified approach and new results

Information Associée aux Fonctions Déterministes et Information Quantique des Matrices non Probabilites: Approche Unifiée et Nouveaux Résultats

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

This paper provides new results on the entropy of functions on the one hand, and exhibits a unified approach to entropy of functions and quantum entropy of matrices with or without probability. The entropy of continuously differentiable functions is extended to stair-wise functions, a measure of relative information between two functions is obtained, which is fully consistent with Kullback cross-entropy, Renyi cross-entropy and Fisher information. The theory is then applied to stochastic processes to yield some concepts of random geometrical entropies defined on path space, which are related to fractal dimension in the special case when the process is a fractional Brownian. Then it shows how one can obtain Shannon entropy of random variables by combining the maximum entropy principle with Hartley entropy. Lastly quantum entropy of non probabilistic matrices (extension of Von Neumann quantum mechanical entropy) is derived as a consequence of Shannon entropy of random variables.

Résumé

Cet article contient de nouveaux résultats sur ľentropie informationnelle des fonctions, et propose une approche unifiée à ľentropie des fonctions et à ľentropie quantique des matrices avec ou sans probabilité. Ľentropie des fonctions continûment différentiables est étendue aux fonctions en escalier, une mesure de ľinformation relative entre deux fonctions est obtenue, et sa relation avec ľentropie relative de Kullback, ľentropie relative de Renyi et ľinformation de Fisher est mise en évidence. En appliquant ce modèle aux processus stochastiques, on obtient une famille ďentropies géométriques aléatoires définies dans ľespace des trajectoires, qui sont liées de près à la dimension fractale des mouvements browniens fractionnaires. Ensuite on propose un nouvel ensemble ďaxiomes qui permettent ďobtenir ľentropie de Shannon comme une conséquence du principe de Jaynes (maximisation de ľentropie) et de ľentropie de Hartley. Finalement, on construit un modèle ďentropie quantique pour les matrices non probabilistes (extension de ľentropie quantique de Von Neumann) comme conséquence de ľentropie de Shannon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Band (W.), Park (J. L.). New information-theoretic foundations for quantum statistics.Foundations of Physics (1976),6, pp. 244–262.

    Article  MathSciNet  Google Scholar 

  2. Band (W.), Park (J. L.). Rigorous information-theoretic foundations for quantum statistics.Foundations of Physics (1977),7, pp. 705–718.

    Article  MathSciNet  Google Scholar 

  3. Blankenbecler (R.), Partovi (M. H.). Uncertainty, entropy, and the statistical mechanics of microscopic systems.Phys. Rev. Lett. (1985),54, pp. 373–376.

    Article  MathSciNet  Google Scholar 

  4. Fadeev (D. K.). On the concept of entropy of finite probabilistic scheme (in Russian).Uspehi Mat. Nauk (N. S.) (1956),11, n° 1 (67), pp. 227–231.

    MathSciNet  Google Scholar 

  5. Hartley (R. V.). Transmission of information.Bell System Tech. J. (1928),7, pp. 535–563.

    Google Scholar 

  6. Hatsopoulos (G. N.), Gyftopoulos (E. P.). A unified quantum theory of mechanics and thermodynamics. Part I. Postulates.Foundations of Physics (1976),6, pp. 15–31.

    Article  MathSciNet  Google Scholar 

  7. Jaynes (E. T.). Information theory and statistical mechanics I and II.Physical Review (1957),106, pp. 620–630;108, pp. 171-190.

    Article  MathSciNet  Google Scholar 

  8. Jumarie (G.). Relative information. Theories and applications.Springer Verlag (1990a).

  9. Jumarie (G.). Further results on the information theory of deterministic functions and its applications to pattern recognition.Ann. Télécommunic. (1990b),45, n° 1–2, pp. 66–88.

    MATH  MathSciNet  Google Scholar 

  10. Mandelbrott (B. B.). The fractal geometry of nature.W. H. Freeman and Co (1982).

  11. Neumann (J. Von). Die Mafhematischen Grundlagen der Quantenmechanik.Springer Verlag (1932).

  12. Ohya (M.). On compound state and mutual information in quantum information theory.IEEE Trans. Information Theory (1983),29, n° 5, pp. 770–774.

    Article  MATH  MathSciNet  Google Scholar 

  13. Renyi (A.). Probability theory.North Holland (1970).

  14. Shannon (C. E.), Weaver (W.). The mathematical theory of communication.University of Illinois Press (1949).

  15. Shore (J. E.), Johnson (R. W.). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy.IEEE Trans. Information Theory (1980),26, n° 1, pp. 26–37.

    Article  MATH  MathSciNet  Google Scholar 

  16. Wehrl (A.). General properties of entropies.Rev. Modern Physics (1978),50, pp. 221–260.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jumarie, G. Information of deterministic functions and quantum information of non probabilistic matrices A unified approach and new results. Ann. Télécommun. 48, 243–259 (1993). https://doi.org/10.1007/BF02995733

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995733

Key words

Mots clés

Navigation