Skip to main content
Log in

Synergy between synthetic aperture radar and other sensors for the remote sensing of the ocean

Synergie Entre les Radarsà Synthèse D’ouverture et les Autres Capteurs pour la TéléDétection des Océans

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Over the last decades, satellite remote sensing has proved to be a valuable and effective tool for monitoring physical and biological ocean processes. However there are cases where data from one remote sensor alone cannot be interpreted unambiguously. In these situations the combination of data from different sensors can help to understand the observed processes due to the combined benefits of the various strengths and advantages of individual instruments. This paper illustrates the potential of synergy between synthetic aperture radar data and data from thermal and optical satellite sensors. Different aspects of oceanic and atmospheric fronts, eddies, upwelling, internal waves and surface films are imaged by the sensors and combined data give a broader picture of the physical processes involved. While the strengths of synergy are demonstrated in several examples, more frequent coincidence of data from existing and future sensors will be necessary before the benefits of synergy occur on an operational basis.

Résumé

Au cours des dernières décennies, la télédétection satellitaire a fait la preuve de sa pertinence en tant qu ’outil de surveillance des processus physiques et biologiques des océans. Cependant il est des cas où les données d’un seul capteur ne peuvent être interprétées sans ambiguïtés. Dans ces cas-là, la combinaison des données de différents capteurs peut aider à comprendre les processus observés du fait des avantages et des particularités de chacun des instruments pris séparément. Ce papier illustre le potentiel de la synergie entre les données de capteurs rso et celles provenant de capteurs optiques et infrarouges. Différents aspects des fronts océaniques et atmosphériques, des tourbillons, des remontées d’eaux froides, des ondes internes et des films de surface sont imagés par les capteurs et la combinaison des données offre une visualisation plus générale des processus physiques à l’œuvre. Bien que les points forts de la synergie soient démontrés dans plusieurs exemples, une plus grande répétition des co ïncidences de données sera nécessaire pour les capteurs actuels et futurs avant que les apports de la synergie deviennent bénéfiques sur une base opérationnelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpers (W.), Theory of radar imaging of internal waves,Nature,314, 245–247, 1985.

    Article  Google Scholar 

  2. Donlon (C.J.), An investigation of the oceanic skin temperature deviation,PhD thesis, University of Southampton, U.K, 1994.

  3. Gower (J.F.R.), Wind and surface features in SAR images: The Canadian program, inProc. 1 st ERS-1 Symposium, ESA Spec. Publ,SP-359(1), 101–106, 1993.

    Google Scholar 

  4. Hooker (S.B.), Esaias (W.E.), Feldman (G.C.), Gregg (W.W.), McClain (C.R.), An Overview of SeaWiFS and Ocean Colour, inNASA Tech. Memo. 104566,1, 1992.

  5. Hu (C), Carder (K), Muller-Karger (F.E.), Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,Remote Sens. Environm.,74, 195–206, 2000.

    Article  Google Scholar 

  6. Johannessen, (J.A.), Shuchman (R.A.), Digranes (G.), Lyzenga (D.R.), Wackerman (C), Johannessen (O.M.), Vachon (P.W.), Coastal ocean fronts and eddies imaged with ERS-1 synthetic aperture radar,J. of Geophys. Research,101, C3, 6651–6667, 1996a.

    Article  Google Scholar 

  7. Johannessen (J.A.), Vachon (P.W.), Johannessen (O.M.), ers -1 SAR imaging of marine boundary layer processes, Study of Earth System fromSpace-Journal of Earth Observation and Remote Sensing (refereed Journal of the Russian Academy of Science), n°3, 1996b.

  8. Kearns (E.J.), Hanafin (J.A.), Evans (R.H.), Minnett (P.J.), Brown (O.B.), An independent assessment of Pathfinder avhrr sea surface temperature accuracy using the Marine Atmosphere Emitted Radiance Interferometer (maeri),Bulletin of American Meteorological Society,81(7), 2000.

  9. McClain (C.R.), Cleave (M.L.), Feldman (G.C.), Gregg (W.W.), Hooker (S.B.), Kuring (N.), Science Quality SeaWiFS data for global biosphere research,Sea Technology, Sept. 1998, 10–16.

  10. Melsheimer (C), Alpers (W.), Gade (M.), Investigation of multifrequency / multipolarization radar signatures of rain cells over the ocean using sir-c/x-sar data,J. Geophys. Research,103, C9, 18,867–18,884, 1998.

    Google Scholar 

  11. Merchant (C.J.), Harris (A.R.), Toward the elimination of bias in satellite retrievals of sea surface temperature 2. Comparison with in situ measurements,J. Geophys. Research,104, (C10) 23, 23,579–23,590, 1999.

    Google Scholar 

  12. Mitnik (L.M.), Mesoscale coherent structures in the surface wind field during cold air outbreaks over the far eastern seas from satellite side looking radar,Mer,30, 297–314, 1992.

    Google Scholar 

  13. Robinson (I.S.), Johannessen (J.), Opportunities for combined sar and atsr ocean observations during the ers tandem mission,Proc. 3 rd ers Symp. On Space at the service of our environment, Florence, Italy, pp. 1337–1342, 1997.

    Google Scholar 

  14. Ruddick (K.G.), Ovidio (F.), Rijkeboer (M.), Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,Appl. Optics,39(6), 897–912, 2000.

    Article  Google Scholar 

  15. Schlüssel (P.), Emery (W.J.), Grassl (H.), Mammen (T.), On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature,J Geophys. Research,95, C8, 13,341–13,356, 1990.

    Google Scholar 

  16. Sikora (T.D.), Young (G.S.), Shirer (H.N.), Chapman (R.D.), Estimating convective atmospheric boundary layer depth from microwave radar imagery of the sea surface,J. Appl. Meteorol,36, 833–845, 1997.

    Article  Google Scholar 

  17. Ufermann (S.), Romeiser (R.), Numerical study on signatures of atmospheric convective cells in radar images of the ocean,J. Geophys. Research,104, C11, 25,707–25,719, 1999.

    Google Scholar 

  18. Ufermann (S.), Robinson (I.S.), Mobley (C.D.), Investigations of case-II water optical properties in the Rhine region of freshwater influence, inProceedings of Ocean Optics XV, Monaco, 2000.

  19. Vachon (P.W.), Johannessen (J.A.), Browne (D.P.), ers -1 sar images of atmospheric gravity waves,ieee Transactions on Geosci. and Remote Sensing, 33(4), 1995.

  20. Young (G.S.), Sikora (T.D.), Winstead (N.S.), Inferring marine atmospheric boundary layer properties from spectral characteristics of satellite-borne sar imagery,Monthly weather review,128, 1506–1520, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Ufermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ufermann, S., Robinson, I.S. & Silva, J.C.B.D. Synergy between synthetic aperture radar and other sensors for the remote sensing of the ocean. Ann. Télécommun. 56, 672–681 (2001). https://doi.org/10.1007/BF02995561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995561

Key words

Mots clés

Navigation