Skip to main content
Log in

Serial change in123I-MIBG myocardial scintigraphy in non-insulin-dependent diabetes mellitus

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Purpose

We performed123I-MIBG (MIBG) myocardial scintigraphy twice in patients with noninsulin-dependent diabetes mellitus (NIDDM) to investigate whether MIBG distribution was improved by pertinent clinical control. To determine the influential factors for MIBG distribution, we investigated the association between various clinical parameters and the serial change in MIBG uptake parameters.Patients and Methods: Twenty NIDDM patients with no cardiac disorders were evaluated. Planar images were taken at 30 minutes (early) and 3 hours (delayed) after MIBG injection. The heart-to-upper-mediastinum uptake ratio (H/M) and washout ratio (WR) were calculated as parameters for estimating cardiac sympathetic function. Patients were divided into two groups, eight in the improved group and twelve in the unimproved group, according to the serial change in H/M. The mean interval between the baseline and the follow up study was 2.1±0.6 year. Differences between the means of the laboratory data in patients in both groups were compared for the baseline and the follow up study by using the paired t-test. As a means of determining the influential factors for a serial change of MIBG uptake, Fisher’s exact test was performed to evaluate the association between the serial change in cardiac MIBG parameters and changes in other clinical parameters, such as blood sugar (BS) control, BS control method (insulin therapy), serum cholesterol control, and severity of diabetic complications. We also analyzed the association between the changes in CVR-R (coefficient variance of R-R intervals at rest ECG) or NCV (velocity of posterior tibial nerve) and those of other clinical parameters. Associations among these neurological parameters (MIBG parameters, CVR-R and NCV) were also analyzed.Results: Paired t-tests showed a significant decrease in fasting blood sugar and fructosamine in the improved group in the follow up study compared to those in the baseline study. Nevertheless, Fisher’s exact test showed no significant association between FBS, HbA1C, fructosamine and the improvement in cardiac MIBG uptake. The only significant association was observed between the serial change in H/M and the BS-control method (insulin therapy). Within the neurological parameters, a significant association was noted between the serial changes in H/M and CVR-R.Conclusion: Although BS control was likely to be an important factor, it did not always ameliorate cardiac MIBG uptake. Based on the significant association between the BS-control method (insulin therapy) and MIBG uptake change, the severity of diabetes mellitus was likely to be a more influential factor. It was suggested that cardiac MIBG uptake could improve within the mild stage if controlled by diet therapy or an oral hypoglycemic agent in NIDDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewing DJ, Cambell IW, Clarke BF. The natural history of diabetic autonomic neuropathy.Q J Med 1980; 49: 95–108.

    PubMed  CAS  Google Scholar 

  2. Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy.JAMA 1974; 229: 1749–1754.

    Article  PubMed  CAS  Google Scholar 

  3. Kahn JK, Sisson JC, Vinik AI. QT interval prolongation and sudden cardiac death in diabetic autonomic neuropathy.J Clin Endocrinol Metab 1987; 64: 751–754.

    Article  PubMed  CAS  Google Scholar 

  4. Nagamachi S, Jinnouchi S, Nakahara H, Flores LG, Ohnishi T, Hoshi H, et al123I-MIBG myocardial scintigraphy in diabetic patients: Relationship to autonomic neuropathy.Nucl Med Commun 1996; 17: 621–632.

    Article  PubMed  CAS  Google Scholar 

  5. Mäntysaari M, Kuikka J, Mustonene J, Tahvanainen K, Vanninen E, Länsimies E, et al. Noninvasive detection of cardiac sympathetic nervous dysfunction in diabetic patients using [123I]metaiodobenzylguanidine.Diabetes 1992; 41: 1069–1075.

    Article  PubMed  Google Scholar 

  6. Kim SJ, Lee JD, Ryu YH, Jeon P, Shim YW, Yoo HS, et al. Evaluation of cardiac sympathetic neuronal integrity in diabetic patients using iodine-123 metaiodobenzyl guanidine.Eur J Nucl Med 1996; 23: 401–406.

    Article  PubMed  CAS  Google Scholar 

  7. Ziegler D, Weise F, Langen KF, Piolot R, Boy C, Hübinger A, et al. Effects of glycemic control on myocardial sympathetic innervation assessed by [123I] metaiodobenzylguanidine scintigraphy: a 4-year prospective study in IDDM patients.Diabetologica 1998; 41: 443–451.

    Article  CAS  Google Scholar 

  8. Hattori N, Tamaki N, Hayashi T, Masuda I, Kudoh T, Tateno M, et al. Regional abnormality of iodine-123-MIBG in diabetic hearts.J Nucl Med 1996; 37: 1985–1990.

    PubMed  CAS  Google Scholar 

  9. Dubois EA, Kam KL, Somsen GA, Boer GJ, Bruin K, Batink HD, et al. Cardiac iodine-123 metaiodobenzyl-guanidine uptake in animals with diabetes mellitus and/or hypertension.Eur J Nucl Med 1996; 23: 901–908.

    Article  PubMed  CAS  Google Scholar 

  10. Utsunomiya K, Narabayashi I, Nakatani Y, Tamura K, Onishi S. I-123 MIBG cardiac imaging in diabetic neuropathy before and after Epalrestat therapy.Clin Nucl Med 1999; 24: 418–420.

    Article  PubMed  CAS  Google Scholar 

  11. Utsunomiya K, Narabayashi I, Tamura K, Nakatani Y, Saika Y, Onishi S, et al. Effects of aldose reductase inhibitor and vitamin B12 on myocardial uptake of iodine-123 metaiodobenzylguanidine in patients with non-insulin dependent diabetes mellitus.Eur J Nucl Med 1998; 25: 1643–1648.

    Article  PubMed  CAS  Google Scholar 

  12. Langer A, Freeman MR, Josse RG, Armstrong PW. Metaiodobenzylguanidine imaging in diabetes mellitus: Assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia.J Am Coll Cardiol 1995; 25: 610–618.

    Article  PubMed  CAS  Google Scholar 

  13. Tamura K, Utsunomiya K, Nakatani Y, Saika Y, Onishi S, Iwasaka T. Use of iodine-123 metaiodobenzylguanidine scintigraphy to assess cardiac sympathetic denervation and the impact of hypertension in patients with non-insulin-dependent diabetes mellitus.Eur J Nucl Med 1999; 26: 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  14. Nagamachi S, Jinnouchi S, Flores II LG, Ohnishi T, Futami S, Nakahara H, et al.123I-MIBG lung uptake in patients with diabetes mellitus.KAKU IGAKU (Jpn J Nucl Med) 1997; 34: 797–805.

    CAS  Google Scholar 

  15. Nagamachi S, Jinnouchi S, Kurose T, Ohnishi T, Flores II LG, Nakahara H, et al.123I-MIBG myocardial scintigraphy in diabetic patients: Relationship with201Tl uptake and cardiac autonomic function.Ann Nucl Med 1998; 12: 323–331.

    Article  PubMed  CAS  Google Scholar 

  16. Ito T, Azuma S, Hisada K. Studies of the relationship between decreased myocardial123I-Metaiodobenzylguanidine (MIBG) uptake and clinical examination findings in patients with non-insulin dependent diabetes mellitus.J Japan Diab Soc 1998; 41: 1063–1071.

    CAS  Google Scholar 

  17. Hattori N, Schweiger M. Metaiodobenzylguanidine scintigraphy of the heart: what we learnt clinically?Eur J Nucl Med 2000; 27: 1–6

    Article  PubMed  CAS  Google Scholar 

  18. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function test: 10 years experience in diabetes.Diabetes Care 8: 491–498.

  19. Watkins PJ. Natural history of the diabetic neuropathies.Q J Med 1990; 77: 1209–1218.

    PubMed  CAS  Google Scholar 

  20. Yokoyama I. Improvement of myocardial flow reserve after successful improvement of hyperglycemia in non-insulin dependent diabetes (NIDDM) was more prominent in NIDDM with coronary artery disease rather than in NIDDM with chest pain syndrome.J Nucl Med 1999; 40: 168.

    Google Scholar 

  21. Minemawari Y, Tanaka S. A clinical significance of blood glucose control in coronary arteriosclerotic disease with abnormal glucose tolerance.J Japan Diab Soc 1999; 42: 735–742.

    Google Scholar 

  22. Yokoyama I, Yonekura K, Ohtake T, Yang W, Shin WS, Yamada N. Coronary microangiopathy in type 2 diabetic patients: Relation to glycemic control, sex, and microvascular angina rather than to coronary artery disease.J Nucl Med 2000; 41: 978–985.

    PubMed  CAS  Google Scholar 

  23. Mäntysaari M, Kuikka J, Mustonen J, Tahvanainen K, Vanninen E, Lansimies E, et al. Measurement of123I-myocardial metaiodobenzyl-guanidine for studying cardiac autonomic neuropathy in diabetes mellitus.Clin Auton Res 1996; 6: 163–169.

    Article  PubMed  Google Scholar 

  24. Kurata C, Okayama K, Wakabayashi Y, Shouda S, Mikami T, Tawarahara K, et al. Cardiac sympathetic neuropathy and effects of aldose reductase inhibitor in streptozotocin-induced diabetic rats.J Nucl Med 1997; 38: 1677–1680.

    PubMed  CAS  Google Scholar 

  25. Terashima H, Hama K, Yamamoto R, Tsuboshima M, Kikkawa R, Hatanaka I, et al. Effects of a new aldose reductase inhibitor on various tissuesin vitro.J Pharmacol Exp Ther 1984; 229: 226–230.

    PubMed  CAS  Google Scholar 

  26. Utsunomiya K, Tamura K, Nakatani Y, Saika Y, Karime S, Ohnishi S. Effects of Mecobalamine on myocardial uptake of I-123 MIBG in patients with non insulin dependent diabetes mellitus (II).Jpn Pharmacol Ther 1997; 25: 305–308.

    Google Scholar 

  27. John MS, Scott JM, Weir DG. The methyl folate trap.Lancet 1981; II: 337.

    Google Scholar 

  28. Watanabe T, Kaji R, Oka N, Bara W, Kimura J. Ultra-high dose methylcobalamin promotes nerve regeneration in experimental acrylamine neuropathy.J Neural Sci 1994; 122: 140–143.

    Article  CAS  Google Scholar 

  29. Hayakawa T. An investigation of diabetic polyneuropathy by microneurography: Comparison of the data with motor nerve conduction velocity.J Japan Diab Soc 1999; 42: 335–340.

    Google Scholar 

  30. Nagaoka H, Izuka T, Kubota S, Kato N, Suzuki T, Inoue T, et al. Depressed contractile response to exercise in diabetic patients in the absence of cardiovascular disease: Relationship to adrenergic cardiac dysinnervation.Nucl Med Commun 1997; 18: 761–770.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagamachi, S., Jinnouchi, S., Kurose, T. et al. Serial change in123I-MIBG myocardial scintigraphy in non-insulin-dependent diabetes mellitus. Ann Nucl Med 16, 33–38 (2002). https://doi.org/10.1007/BF02995289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995289

Key words

Navigation