Skip to main content

Advertisement

Log in

Myocardial viability assessment with gated SPECT Tc-99m tetrofosmin % wall thickening: Comparison with F-18 FDG-PET

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Object: This study was designed to assess the value of gated SPECT Tc-99m-tetrofosmin (TF) wall thickening (WT) in addition to TF exercise (Ex)/rest myocardial SPECT, in comparison with F-18 fluorodeoxyglucose (FDG)-PET.Methods: The study population consisted of 33 patients with old myocardial infarction (27 men and 6 women; mean age, 62±8 years old). All patients underwent Ex/rest TF SPECT and glucose loading FDG-PET. Polar map images of Ex/rest TF were generated exercise-rest perfusion scintigraphy. LV segments with less than 70% of the maximum TF activity on the exercise image were defined as stress-induced defects. Among these, the segments whose TF activity increased by 10% from exercise to rest images or exceeded 70% of the maximum uptake were defined as reversible (viable) defects. The remaining defects on the rest image were irreversible (non-viable) defect segments, and were considered for viability study on the basis of %WT. %WT was calculated according to the standard method: {(counts ES—counts ED)/counts ED}×100. A viable segment on gated SPECT was defined as a segment whose %WT exceeded the lower limit of the normal value (mean-SD). PET viability was defined as FDG uptake exceeding 50% of the maximum count.Results: Among the 792 segments evaluated in the 33 patients studied, there were 689 PET viable segments. Of the 689 segments analyzed, 198 (29%) were identified as having defects on Ex images. Among these defects, 55 (8%) were reversible or partially reversible, as evidenced by rest images, and 143 (21%) were irreversible. Of the irreversible segments on Ex/rest images, 106 (15%) demonstrated no apparent WT by gated TF SPECT, whereas 37 (6%) segments with irreversible defects did have apparent WT. Overall, the sensitivity of Ex/rest TF perfusion imaging was 79%. Sensitivity was improved from 79% to 85% by combining %WT and perfusion data, but specificity was reduced from 70% to 56%.Conclusion: %WT evaluated from gated TF imaging enhanced myocardial viability assessment in comparison with FDG-PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faber TL, Akers MS, Peshock RM, Corbett JR. Three-dimensional motion and perfusion quantification in gated single-photon emission computed tomograms.J Nucl Med 1991; 32: 2311–2317.

    PubMed  CAS  Google Scholar 

  2. Perrone-Filardi P, Bacharach SL, Dilsizian, V, Maurea S, Frank JA, Bonow RO. Regional left ventricular wall thickening. Relation to regional uptake of F-18 FDG-PET and Tl-201 TlCl in patients with chronic coronary artery disease and left ventricular dysfunction.Circulation 1992; 86: 1125–1137.

    PubMed  CAS  Google Scholar 

  3. Tamaki N, Takahashi N, Kawamoto M, Torizuka T, Tadamura E, Yonekura Y, et al. Myocardial tomography using technetium-99m-tetrofosmin to evaluate coronary artery disease.J Nucl Med 1994; 35: 594–600.

    PubMed  CAS  Google Scholar 

  4. Zaret BL, Rigo P, Wackers FJ, Hendel RC, Braat SH, Iskandrian AS, et al. Myocardial perfusion imaging with technetium-99m-tetrofosmin: comparison to Tl-201 imaging and coronary angiography in a phase III multicenter trial.Circulation 1995; 91: 313–319.

    PubMed  CAS  Google Scholar 

  5. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall motion abnormalities predicted by positron tomography.N Engl J Med 1986; 314: 884–888.

    PubMed  CAS  Google Scholar 

  6. Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting.Am J Cardiol 1989; 64: 860–865.

    Article  PubMed  CAS  Google Scholar 

  7. Schelbert HR, Buxton D. Insights into coronary artery disease gained from metabolic imaging.Circulation 1988; 78: 496–505.

    PubMed  CAS  Google Scholar 

  8. Nienaber CA, Brunken RC, Sherman CT, Yeatman LA, Gambhir SS, Krivokapich J, et al. Metabolic and functional reconvery of ischemic human myocardium after coronary angioplasty.J Am Coll Cardiol 1991; 18: 966–978.

    PubMed  CAS  Google Scholar 

  9. Marwick TH, MacIntyre WJ, Salcedo EE, Go RT, Saha G, Beachler A. Identification of ischemic and hibernating myocardium: feasibility of post-exercise F-18-deoxyglucose positron emission tomography.Cathet Cardio-vasc Diagn 1991; 22: 100–106.

    Article  CAS  Google Scholar 

  10. Altehoefer C, Kaiser HJ, Doerr R, Feinendegen C, Beilin I, Uebis R, et al. Fluorine-18-deoxyglucose PET for assessment of viable myocardium in perfusion defects in technetium-99m MIBI SPECT: a comparative study in patients with coronary artery disease.Eur J Nucl Med 1992; 19: 334–342.

    Article  PubMed  CAS  Google Scholar 

  11. Altehoefer C, Vom Dahl J, Biedermann M, Uebis R, Beilin I, Sheehan F, et al. Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine-18-FDG PET.J Nucl Med 1994; 35: 569–574.

    PubMed  CAS  Google Scholar 

  12. Snapper HJ, Shea NL, Konstam MA, Oates E, Udelson JE. Combined analysis of resting regional wall thickening and stress perfusion with electrocardiographic-gated technetium 99m-labeled sestamibi single-photon emission computed tomography: prediction of stress defect reversibility.J Nucl Cardiol 1997; 4: 3–10.

    Article  PubMed  CAS  Google Scholar 

  13. Kouris K, Clarke GA, Jarritt PH, Townsend CE, Thomas SN. Physical performance evaluation of the Toshiba GCA-9300A triple-headed system.J Nucl Med 1993; 34: 1778–1789.

    PubMed  CAS  Google Scholar 

  14. Cuocolo A, Acampa W, Nicolai E, Pace L, Petretta M, Salvatore M. Quantitative thallium-201 and technetium-99m sestamibi tomography at rest in detection of myocardial viability in patients with chronic ischemic left ventricular dysfunction.J Nucl Cardiol 2000; 7: 8–15.

    Article  PubMed  CAS  Google Scholar 

  15. Udelson JE, Coleman PS, Metherall J, Pandian NG, Gomez AR, Griffith JL, et al. Predicting recovery of severe regional ventricular dysfunction: Comparison of resting scintigraphy with Tl-201 and Tc-99m-sestamibi.Circulation 1994; 89: 2552–2561.

    PubMed  CAS  Google Scholar 

  16. Bodenheimer MM, Banka VS, Hermann GA, Trout RG, Pasdar H, Helfant RH. Reversible asynergy. Histopathologic and electrographic correlations in patients with coronary artery disease.Circulation 1976; 53: 792–796.

    PubMed  CAS  Google Scholar 

  17. Ziffer JA, Cooke CD, Folks RD, LaPidus AS, Alazraki NP, Garcia EV. Quantitative myocardial thickening assessed with sestamibi: clinical evaluation of a count-based method. [abstract].J Nucl Med 1991; 32: 1006.

    Google Scholar 

  18. Chua T, Kiat H, Germano G, Maurer G, Van Train K, Friedman J, et al. Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability: correlation with echocardiography and rest thallium-201 scintigraphy.J Am Coll Cardiol 1994; 23: 1107–1114.

    PubMed  CAS  Google Scholar 

  19. Williams KA, Taillon LA. Reversible ischemia in severe stress technetium99m-labeled sestamibi perfusion defects assessed from gated single-photon emission computed tomographic polar map Fourier analysis.J. Nucl Cardiol 1995; 2: 199–206.

    Article  PubMed  CAS  Google Scholar 

  20. Marzullo P, Marcassa C, Sambuceti G, Parodi O, L’Abbate A. The clinical usefulness of electrocardiogram-gated Tc-99m methoxy-isobutyl-isonitrile images in the detection of basal wall motion abnormalities and reversibility of stress induced perfusion defects.Int J Card Imaging 1992; 8: 131–141.

    Article  PubMed  CAS  Google Scholar 

  21. Najm YC, Timmis AD, Maisey MN, Ellam SV, Mistry R, Curry PV, et al. The evaluation of ventricular function using gated myocardial imaging with99mTc-MIBI.Eur Heart J 1989; 10: 142–148.

    PubMed  CAS  Google Scholar 

  22. Tischler MD, Niggel JB, Battle RW, Fairbank JT, Brown KA. Validation of global and segmental left ventricular contractile function using gated planar technetium-99m-sestamibi myocardial perfusion imaging.J Am Coll Cardiol 1994; 23: 141–145.

    PubMed  CAS  Google Scholar 

  23. Anagnostopoulos C, Gunning MG, Pennell DJ, Laney R, Proukakis H, Underwood SR. Regional myocardial motion and thickening assessed at rest by ECG-gated99mTc-MIBI emission tomography and by magnetic resonance imaging.Eur J Nucl Med 1996; 23: 909–916.

    Article  PubMed  CAS  Google Scholar 

  24. Gunning MG, Anagnostopoulos C, Davies G, Forbat SM, Ell PJ, Underwood SR. Gated technetium-99m-tetrofosmin SPECT and cine MRI to assess left ventricular contraction.J Nucl Med 1997; 38: 438–442.

    PubMed  CAS  Google Scholar 

  25. Stollfuss JC, Haas F, Matsunari I, Neverve J, Nekolla S, Schneider-Eicke J, et al. Regional myocardial wall thickening and global ejection fraction in patients with low angiographic left ventricular ejection fraction assessed by visual and quantitative resting ECG-gated99mTc-tetrofosmin single-photon emission tomography and magnetic resonance imageing.Eur J Nucl Med 1998; 25: 522–530.

    Article  PubMed  CAS  Google Scholar 

  26. Rigo P, Leclercq B, Itti R, Lahiri A, Braat S. Technetium-99m-tetrofosmin myocardial imaging: a comparison with thallium-201 and angiography.J Nucl Med 1994; 35: 587–593.

    PubMed  CAS  Google Scholar 

  27. Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography.J Nucl Med 1991; 32: 565–578.

    PubMed  CAS  Google Scholar 

  28. Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, F-18-labeled fluorodeoxyglucose, and N-13 ammonia.Circulation 1983; 67: 766–778.

    PubMed  CAS  Google Scholar 

  29. Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects.J Am Coll Cardiol 1987; 10: 557–567.

    Article  PubMed  CAS  Google Scholar 

  30. Brunken RC, Kottou S, Nienaber CA, Schwaiger M, Ratib OM, Phelps ME, et al. PET detection of viable tissue in myocardial segments with persistent defects at Tl-201 SPECT.Radiology 1989; 172: 65–73.

    PubMed  CAS  Google Scholar 

  31. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with F-18 fluorodeoxyglucose.Circulation 1991; 83: 26–37.

    PubMed  CAS  Google Scholar 

  32. Brunken R, Tillisch J, Schwaiger M, Child JS, Marshall R, Mandelkern M, et al. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarction: Evidence for persistence of viable tissue in some infarct regions by positron emission tomography.Circulation 1986; 73: 951–963.

    PubMed  CAS  Google Scholar 

  33. Tamaki N, Yonekura Y, Yamashita K, Senda M, Saji H, Hashimoto T, et al. Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction.Am J Cardiol 1988; 62: 202–208.

    Article  PubMed  CAS  Google Scholar 

  34. Fudo T, Kambara H, Hashimoto T, Hayashi M, Nohara R, Tamaki N, et al. F-18 deoxyglucose and stress N-13 ammonia positron emission tomography in anterior wall healed myocardial infarction.Am J Cardiol 1988; 61: 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  35. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size.J Comput Assist Tomogr 1979; 3: 299–308.

    Article  PubMed  CAS  Google Scholar 

  36. Fukuchi K, Uehara T, Morozumi T, Tsujimura E, Hasegawa S, Yutani K, et al. Quantification of systolic count increase in technetium-99m-MIBI gated myocardial SPECT.J Nucl Med 1997; 38: 1067–1073.

    PubMed  CAS  Google Scholar 

  37. Sorenson JA, Phelps ME.Physics in Nuclear Medicine. Philadelphia; WB Saunders, 1987.

    Google Scholar 

  38. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, et al. Quantitative rest technetium-99m tetrofosmin imaging in predicting functional recovery after revascularization: Comparison with rest-redistribution thallium-201.J Am Coll Cardiol 1997; 29: 1226–1233.

    Article  PubMed  CAS  Google Scholar 

  39. Dilsizian V, Arrighi JA, Diodati JG, Quyyumi AA, Alavi K, Bacharach SL, et al. Myocardial viability in patients with chronic coronary artery disease. Comparison of99mTc-sestamibi with thallium reinjection and [18F]fluorodeoxy-glucose.Circulation 1994; 89: 578–587.

    PubMed  CAS  Google Scholar 

  40. Marzullo P, Sambuceti G, Parodi O. The role of sestamibi scintigraphy in the radioisotopic assessment of myocardial viability.J Nucl Med 1992; 33: 1925–1930.

    PubMed  CAS  Google Scholar 

  41. DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact.J Nucl Med 1995; 36: 952–955.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunehiko Nishimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, A., Hasegawa, S., Paul, A.K. et al. Myocardial viability assessment with gated SPECT Tc-99m tetrofosmin % wall thickening: Comparison with F-18 FDG-PET. Ann Nucl Med 16, 25–32 (2002). https://doi.org/10.1007/BF02995288

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995288

Key words

Navigation