Skip to main content
Log in

Chaos hamiltonien

Hamiltonian chaos

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Analyse

Le chaos hamiltonien est illustré par le régime stochastique d’un moteur synchrone dipolaire. Ce régime s’explique au moyen d’un hamiltonien trés simple dont un cas limite particulier décrit le mouvement du pendule non linéaire. La structure de l’espace des phases, telle que la révèle un éclairage stroboscopique repose sur l’emboitement de résonances et l’enchevêtrement de variétés stables et instables.

Abstract

Hamiltonian chaos is illustrated through the chaotic regime of a synchronous dipolar motor. This regime is explained with a quite simple Hamiltonian which describes the nonlinear pendulum in a particular limiting case. Phase space structure as revealed by a stroboscope relies upon the nesting of resonances and the tangle of stable and unstable manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Croquette (V.), Poitou (C.). Cascade de dédoublements de périodes et stochasticité à grande échelle des mouvements d’une boussole.C. R. Acad. Sei, Fr. (1981), Ser. B292, pp. 1353–1356.

    MathSciNet  Google Scholar 

  2. Croquette (V.), Poitou (C.). Cascade of period doubling bifurcations and large scale stochasticity in the motions of a compass.J. Physique, Fr. (1981),42, L537-L539.

    Article  Google Scholar 

  3. Arnold (V. I.), Avez (A.). Problèmes ergodiques de la mécanique classique.Gauthiers-Villars, Paris (1967).

    Google Scholar 

  4. Doveil (F.). Stochastic plasma heating by a large amplitude standing wave.Phys. Rev. Lett., USA (1981),46, no 8, pp. 532–534.

    Article  MathSciNet  Google Scholar 

  5. Escande (D. F.), Doveil (F.). Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems.J. Stat. Phys., USA (1981),26, no 2, pp. 257–284.

    Article  MathSciNet  Google Scholar 

  6. Escande (D. F.), Doveil (F.). Renormalization method for the onset of stochasticity in a Hamiltonian system.Phys. Lett., NL (1981), no 7, pp. 307–310.

  7. Escande (D. F.). Stochasticity in classical Hamiltonian systems: universal aspects.Phys. Reports, NL (1985),121, no 3 et 4, pp. 165–261.

    Article  MathSciNet  Google Scholar 

  8. Poincare (H.). Les méthodes nouvelles de la mecanique céleste.Gauthier-Villars, Paris (1899).

  9. Birkhoff (G. D.). Collected mathematical papers.Dover, New-York (1968).

    MATH  Google Scholar 

  10. Gumowski (I.), Mira (C.). Dynamiquechaotique.Cepddues, Fr (1980).

  11. Gumowski (I.), Mira (C.). Recurrences and discrete dynamic systems.Springer, Berlin (1980).

    MATH  Google Scholar 

  12. Guckenheimer (J.), Holmes (P.). Non-linear oscillations, dynamical systems and bifurcations of vector fields.Springer, New-York (1983).

    Google Scholar 

  13. Escande (D. F.). Dynamique hamiltonienne, dans « Structures et Instabilites» [édité par Godrèche (C.)].Editions de Physique, Fr (1986).

  14. Berry (M.), dans « Nonlinear dynamics » [édité par Jorna (S.)].American Institute of Physics, New-York (1978).

    Google Scholar 

  15. Lichtenberg (A. J.), Lieberman (M. A.). Regular and stochastic motion.Springer, New-York (1983).

    MATH  Google Scholar 

  16. Rasband (S. N.). Dynamics.Wiley, New-York (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escande, D. Chaos hamiltonien. Ann. Telecommun. 42, 210–216 (1987). https://doi.org/10.1007/BF02995240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995240

Mots clés

Key words

Navigation