Skip to main content
Log in

Conception et réalisation de circuits microrubans

Design and layout of microstrip circuits

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Résumé

Cet article vise à fournir un aperçu général du domaine des circuits en microruban, décrivant l’allure générate des circuits imprimés pour hyperfréquences, leurs particularités au point de vue électromagnétisme et mesures, les techniques utilisées pour les fabriquer et les connecter, les matériaux le plus couramment utilisés pour lew fabrication et, finalement, les logiciels d’ordinateur disponibles pour analyser, synthétiser, optimiser, puis préparer et découper les masques destinés à la réalisation de circuits. Les relations approchées les plus précises actuellement disponibles pour caractériser les lignes sont présentées, et les principals techniques mises au point pour analyser les discontinuités sont brièvement décrites.

Abstract

This article provides an up-to-date survey of microstrip circuits. It defines the main features of microwave integrated circuits (MIC), their particuliar characteristics in terms of electromagnetic fields and measurements, the materials most commonly used, the techniques developed to realize and connect circuits and the available computer software for their analysis, synthesis, optimization, and also for the drafting and cutting of the masks required to carry out the photolithographic process. The most accurate relations presently available to characterize microstrip lines are given, and the major models introduced to characterize discontinuities are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Abrie (P. L.). The design of impedance-matching networks for radio-frequency and microwave amplifiers.Artech House, Norwood, MA (1986).

    Google Scholar 

  2. Akhtarzad (S.), Johns (P. B.). Dispersion characteristics of a microstrip line with a step discontinuity.Electronics Letters (1975),11, pp. 310–311.

    Article  Google Scholar 

  3. Altschuler (H. M.), Oliner (A. A.). Discontinuities in the center conductor of symetric strip transmission line.IEEE Trans. Microwave Theory Tech. (1960),8, pp. 328–338.

    Article  Google Scholar 

  4. Anders (P.), Arndt (F.). Microstrip discontinuity capacitances and inductances for double steps, mitered bends with arbitrary angle, and asymmetric right-angle bends.IEEE Trans. Microwave Theory Tech. (1980),28, pp. 1213–1217.

    Google Scholar 

  5. Benedek (P.), Silvester (P.). Equivalent capacitances for microstrip gaps and steps.IEEE Trans. Microwave Theory Tech. (1972),20, pp. 729–733.

    Article  Google Scholar 

  6. Besser (L.). What is the direction of commercial microwave technology?Microwave Systems News (1985),15, no 10, pp. 65–67.

    Google Scholar 

  7. Bochtler (U.), Endress (F.).Cad program designs stripline couplers.Microwaves and RF (1986),25, no 12, pp. 91–95.

    Google Scholar 

  8. Easter (B.). The equivalent circuit of some microstrip discontinuities.IEEE Trans. Microwave Theory Tech. (1975),23, pp. 655–660.

    Article  Google Scholar 

  9. Farrar (A.), Adams (A. T.). Computation of lumped microstrip capacities by matrix-methods: rectangular sections and end effect.IEEE Trans. Microwave Theory Tech. (1971),19, pp. 495–497.

    Article  Google Scholar 

  10. Farrar (A.), Adams (A. T.). Matrix method for microstrip three-dimensional problems,IEEE Trans. Microwave Theory Tech. (1972),20, pp. 497–504.

    Article  Google Scholar 

  11. Fesquet (T.). Etude d’algorithmes pour la synthèse automatique de circuits en Cao. Thèse de doctorat de 3e cycle.Inst. Nat. Polytech., Toulouse (1985), no 247.

  12. Gardiol (F. E.). Hyperfréquences.Georgi, Saint-Saphorin (1981) etDunod, Paris (1987).

    Google Scholar 

  13. Gardiol (F. E.). Lossy transmission lines.Artech, Norwood, MA (1987).

    Google Scholar 

  14. Getsinger (W. J.). Microstrip dispersion model.IEEE Trans. Microwave Theory Tech. (1973),21, pp. 34–39.

    Article  Google Scholar 

  15. Gopinath (A.), Easter (B.). Moment method of calculating discontinuity inductance of microstrip right-angle bends.IEEE Trans. Microwave Theory Tech. (1974),22, pp. 880–883.

    Article  Google Scholar 

  16. Gopinath (A.), Thomson (A. F.), Stephenson (I. M.). Equivalent circuit parameter of microstrip step change in width and cross junctions.IEEE Trans. Microwave Theory Tech. (1976),24, pp. 142–144.

    Article  Google Scholar 

  17. Gosling (I. G.). A new microwave cad layout program.IEE/E12 Colloquium on Computer Aided Design of Microwave Circuits, London (nov. 1985).

  18. Gunston (M. A. R.). Microwave transmission line impedance data.Van Nostrand Reinhold, New York (1972).

    Google Scholar 

  19. Hammerstad (E. O.), Bekkadal (F.). Microstrip handbook.Norwegian Institute of Technology, report Elab stf 44 A 74169, Trondheim (1975).

  20. Hammerstad (E. O.), Jensen (O.). Accurate models for microstrip computer-aided design.IEEE MTT-S International Microwave Symposium Digest, USA (1980), pp. 407–409.

    Google Scholar 

  21. Hoefer (W. J. R.). Theoretical and experimental characterization of narrow transverse slits in microstrip.Nachrichtentechnische Zeitschrift (1977),30, pp. 582–585.

    Google Scholar 

  22. Hoefer (W. J. R.). Equivalent series inductivity of a narrow transverse slit in microstrip.IEEE Trans. Microwave Theory Tech. (1977),25, pp. 822–824.

    Article  Google Scholar 

  23. Hoffmann (G. R.). Introduction to computer aided design of microwave circuits.Proceedings 14th European Microwave Conference, Liè ge, Belgique (1984), pp. 731–737.

  24. Hoffmann (R. K.). Integrierte Mikrowellenschaltungen.Springer, Berlin (1983).

    Book  Google Scholar 

  25. Horton (R.). The electrical characterization of a right- angle bend in microstrip line.IEEE Trans. Microwave Theory Tech. (1973),21, pp. 427–429.

    Article  Google Scholar 

  26. Horton (R.). Equivalent representation of an abrupt impedance step in microstrip line.IEEE Trans. Microwave Theory Tech. (1973),21, pp. 562–564.

    Article  Google Scholar 

  27. Itoh (T.), Mittra (R.), Ward (R. D.). A new method for solving discontinuity problems in microstrip lines.IEEE-GMTT International Symposium Digest, USA (1972), pp. 68–70.

    Google Scholar 

  28. Jain (O. P.), Makios (V.), Chudobiak (W. J.). Coupledmode model of dispersion in microstrip.Electronics Letters (1971),7, pp. 405–406.

    Article  Google Scholar 

  29. James (D. S.), Tse (H. S.). Microstrip end effects.Electronics Letters (1972),8, pp. 46–47.

    Article  Google Scholar 

  30. Jansen (R. H.). The spectral domain approach for microwave integrated circuits.IEEE Trans. Microwave Theory Tech. (1985),33, pp. 1043–1056.

    Article  Google Scholar 

  31. Jansen (R. H.). Linmic, a Cad package for the layoutoriented design of single and multilayer Mics/mmics up to mm wave frequencies.Microwave Journal (1986),29, no 2.

  32. Janssen (W.). Hohlleiter und Streifenleiter.Hüthig, Heidelberg (1977).

    Google Scholar 

  33. Kajfez (D.), Tew (M. D.). Pocket calculator program for analysis of lossy microstrip.Microwave Journal (1980),23, no 12, pp. 39–48.

    Google Scholar 

  34. Kompa (G.). S-matrix computations of microstrip discontinuities with a planar waveguide model.Archiv. Elek. Ü bertragungstech. (1976),30, pp. 58–64.

    Google Scholar 

  35. Koster (N. H. L.), Jansen (R. H.). The microstrip step discontinuity, a revised description.IEEE Trans. Microwave Theory Tech. (1986),34, pp. 213–223.

    Article  Google Scholar 

  36. Laverghetta (T. S.). Microwave materials and fabrication techniques.Artech, Dedham, MA (1984).

    Google Scholar 

  37. Leighton (W. H.), Milnes (A. G.). Junction reactance and dimensional tolerance effects on X-band-3-dB directional couplers.IEEE Trans. Microwave Theory Tech. (1971),19, pp. 814–824.

    Article  Google Scholar 

  38. Maeda (M.). An analysis of gap in microstrip transmission line.IEEE Trans. Microwave Theory Tech. (1972),20, pp. 390–396.

    Article  Google Scholar 

  39. March (S. L.). Microwave circuit layout: a dynamic plot emerges.Microwaves and RF (1984),23, no 12, pp. 59- 161.

    MathSciNet  Google Scholar 

  40. Marcuvitz (N.). Waveguide handbook,Mit Rad. Lab. Series,McGraw-Hill, New York (1951),10.

    Google Scholar 

  41. Mehran (R.). The frequency-dependent scattering matrix of microstrip right-angle bends, T-junctions and crossings.Arch. Elek. Übertragungstech. (1975),29, pp. 454–460.

    Google Scholar 

  42. Mehran (R.). Frequency dependent equivalent circuits for microstrip right-angle bends, T-junctions and crossings.Arch. Elek. Übertragungstech. (1976),30, pp. 80–82.

    Google Scholar 

  43. Menzel (W.). Frequency-dependent transmission properties of truncated microstrip right-angle bends,Electronics Letters (1976),12, p. 641.

    Article  Google Scholar 

  44. Menzel (W.). Frequency-dependent transmission properties of microstrip Y-junctions and 120° bends.IEE Microwaves, Optics and Acoustics (MOA) (1978),2, pp. 55–59.

    Article  Google Scholar 

  45. Menzel (W.), Wolff (I.). A method for calculating the frequency dependent properties of microstrip discontinuities.IEEE Trans. Microwave Theory Tech. (1977),25, pp. 107–112.

    Article  Google Scholar 

  46. Mosig (J. R.), Gardiol (F. E.). Equivalent inductance and capacitance of a microstrip slot.Proceedings 7th European Microwave Conference, Copenhague (1977), pp. 455–459.

  47. Mosig (J. R.), Gardiol (F. E.). A dynamical radiation model for microstrip structures, dans Advances in Electronics and Electron Physics, ed. par P. Hawkes,Academic Press, New York (1982).

    Google Scholar 

  48. Mosig (J. R.), Gardiol (F. E.). Techniques analytiques et numériques dans l’analyse des antennes microruban.Annates Télécommunic. (1985),40, pp. 411–437.

    Google Scholar 

  49. Rohde (U. L.). Models and nonlinearities: major factors in microwaveCad software.Microwave Syst. News (1985),15, no 10, pp. 123–143.

    Google Scholar 

  50. Salerno (M.), Sorrentino (R.). Planim: a new concept in the design of mic filters.Electronics Letters (1986),22, pp. 1054–1056.

    Article  Google Scholar 

  51. Schneider (M. V.). Microstrip lines for microwave integrated circuits.Bell System Technical Journal (1969),48, pp. 1421–1444.

    Article  Google Scholar 

  52. Silvester (P.), Benedek (P.). Equivalent capacitances of microstrip open-circuits.IEEE Trans. Microwave Theory Tech. (1972),20, pp. 511–516.

    Article  Google Scholar 

  53. Silvester (P.), Benedek (P.). Microstrip discontinuity capacitances for right-angle bends, T-junctions and crossings.IEEE Trans. Microwave Theory Tech. (1973),21, pp. 341–346.

    Article  Google Scholar 

  54. Sommerfeld (A.). La propagation des ondes en télégraphic sans fil (en allemand).Ann. der Physik. (1909), série 4,28, pp. 665.

    Article  Google Scholar 

  55. Thomson (A. F.), Gopinath (A.). Calculation of microstrip discontinuity inductances.IEEE Trans. Microwave Theory Tech. (1975),23, pp. 648–655.

    Article  Google Scholar 

  56. Wheeler (H. A.). Transmission line properties of parallel strips separated by a dielectric sheet.IEEE Trans. Microwave Theory Tech. (1965),13, pp. 172–185.

    Article  Google Scholar 

  57. Wolff (I.), Kompa (G.), Mehran (R.). Calculation method for microstrip discontinuities and T-junctions.Electronics Letters (1972),8, pp. 177–179.

    Article  Google Scholar 

  58. Yamashita (E.), Mittra (R.). Variational method for the analysis of microstrip lines.IEEE Trans. Microwave Theory Tech. (1968),16, pp. 251–256.

    Article  Google Scholar 

  59. Zürcher (J. F.), Micros3 - A Cad/cam program for fast realization of microstrip masks.Proceedings of 1985 IEEE MTT-S International Microwave Symposium, Saint-Louis, Missouri, USA (1985).

  60. Zürcher (J. F.), Barlatey (L.), Gardiol (F. E.). Computer-aided method to measure the permittivity of microstrip substrates.Proceedings of 1986 MIOP Symposium, Wiesbaden, Allemagne (1986).

  61. Atwater (H. A.). Tests of microstrip dispersion formulas.IEEE Trans. Microwave Theory Techn. (1988),MTT-36, pp. 619–621.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardiol, F. Conception et réalisation de circuits microrubans. Ann. Télécommun. 43, 220–236 (1988). https://doi.org/10.1007/BF02995082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995082

Mots clés

Key words

Navigation