Skip to main content
Log in

Comparison of spontaneous and adaptive mutation spectra in yeast

  • Special Section: Stationary-Phase Mutations In Microorganisms
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Adaptive mutations occur in nongrowing populations of cells to overcome strong, nonlethal selection conditions. Several models have been proposed for the molecular mechanism(s) for this phenomenon inEscherichia coli, but the mechanisms involved in adaptive mutagenesis in the yeastSaccharomyces cerevisiae are largely unknown. We present here a comparison of the mutational spectra of spontaneous and adaptive frameshift reversion events in yeast. In contrast to results fromE. coli, we find that the mutational spectrum of adaptive mutations inS. cerevisiae is not similar to that seen in mismatch repair defective cells, but rather resembles the spontaneous mutational events that occur during normal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson D. I., Slechta E. S. and Roth J. R. 1998 Evidence that gene amplification underlies the adaptive mutability of the bacteriallac operon.Science 282, 1133–1135.

    Article  PubMed  CAS  Google Scholar 

  • Baranowska H., Policinska Z. and Jachymczyk W. J. 1995 Effects of theCDC2 gene on adaptive mutation in the yeastSaccharomyces cerevisiae.Curr. Genet. 28, 521–525.

    Article  PubMed  CAS  Google Scholar 

  • Boe L. 1990 Mechanism for induction of adaptive mutations inEscherichia coli.Mol. Microbiol. 4, 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Cairns J. and Foster P. L. 1991 Adaptive reversion of a frameshift mutation inEscherichia coli.Genetics 128, 695–701.

    PubMed  CAS  Google Scholar 

  • Cairns J., Overbaugh J. and Miller S. 1988 The origin of mutants.Nature 335, 142–145.

    Article  PubMed  CAS  Google Scholar 

  • Cariello N. F., Piegorsch W. W., Adams W. T. and Skopek T. R. 1994 Computer program for the analysis of mutational spectra: application to p53 mutations.Carcinogenesis 15, 2281–2285.

    Article  PubMed  CAS  Google Scholar 

  • Drake J. W. 1991 Spontaneous mutation.Annu. Rev. Genet. 25, 125–146.

    Article  PubMed  CAS  Google Scholar 

  • Foster P. L. 1993 Adaptive mutation: the uses of adversity.Annu. Rev. Microbiol. 47, 467–504.

    Article  PubMed  CAS  Google Scholar 

  • Foster P. L. 1997 Nonadaptive mutations occur on the F′ episome during adaptive mutation conditions inEscherichia coli.J. Bacteriol. 179, 1550–1554.

    PubMed  CAS  Google Scholar 

  • Foster P. L. 1998 Adaptive mutation: has the unicorn landed?Genetics 148, 1453–1459.

    PubMed  CAS  Google Scholar 

  • Foster P. L. and Cairns J. 1992 Mechanisms of directed mutation.Genetics 131, 783–789.

    PubMed  CAS  Google Scholar 

  • Foster P. L. and Trimarchi J. M. 1994 Adaptive reversion of a frameshift mutation inEscherichia coli by simple base deletions in homopolymeric runs.Science 265, 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Foster P. L. and Trimarchi J. M. 1995a Adaptive reversion of an episomal frameshift mutation inEscherichia coli requires conjugal functions but not actual conjugation.Proc. Natl. Acad. Sci. USA 92, 5487–5490.

    Article  PubMed  CAS  Google Scholar 

  • Foster P. L. and Trimarchi J. M. 1995b Conjugation is not required for adaptive reversion of an episomal frameshift mutation inEscherichia coli.J. Bacteriol. 177, 6670–6671.

    PubMed  CAS  Google Scholar 

  • Foster P. L., Gudmundsson G., Trimarchi J. M., Cai H. and Goodman M. F. 1995 Proofreading-defective DNA polymerase III increases adaptive mutation inEscherichia coli.Proc. Natl. Acad. Sci. USA 92, 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  • Galitski T. and Roth J. R. 1995 Evidence that F plasmid transfer replication underlies apparent adaptive mutation.Science 268, 421–423.

    Article  PubMed  CAS  Google Scholar 

  • Greene C. N. and Jinks-Robertson S. 1997 Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins.Mol. Cell. Biol. 17, 2844–2850.

    PubMed  CAS  Google Scholar 

  • Hall B. G. 1990 Spontaneous point mutations that occur more often when advantageous than when neutral.Genetics 126, 5–16.

    PubMed  CAS  Google Scholar 

  • Hall B. G. 1992 Selection-induced mutations occur in yeast.Proc. Natl. Acad. Sci. USA 89, 4300–4303.

    Article  PubMed  CAS  Google Scholar 

  • Hall B. G. 1998 Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations.Genetica 102–103, 109–125.

    Article  PubMed  Google Scholar 

  • Harris R. S., Longerich S. and Rosenberg S. M. 1994 Recombination in adaptive mutation.Science 264, 258–260.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. S., Bull H. J. and Rosenberg S. M. 1997 A direct role for DNA polymerase III in adaptive reversion of a frameshift mutation inEscherichia coli.Mutat. Res. 375, 19–24.

    PubMed  CAS  Google Scholar 

  • Heidenreich E. and Wintersberger U. 1997 Starvation for a specific amino acid induces high frequencies of rho mutants inSaccharomyces cerevisiae.Curr. Genet. 31, 408–413.

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich E. and Wintersberger U. 1998 Replication-dependent and selection-induced mutations in respiration-competent and respiration-deficient strains ofSaccharomyces cerevisiae.Mol. Gen. Genet. 260, 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman C. S. and Winston F. 1987 A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation ofEscherichia coli.Gene 57, 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Kuzminov A. 1995 Collapse and repair of replication forks inEscherichia coli.Mol. Microbiol. 16, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Lederberg J. and Lederberg E. M. 1952 Replica plating and indirect selection for bacterial mutants.J. Bacteriol. 63, 399–414.

    PubMed  CAS  Google Scholar 

  • Luria S. E. and Delbrück M. 1943 Mutations of bacteria from virus sensitivity to virus resistance.Genetics 28, 491–511.

    PubMed  CAS  Google Scholar 

  • Petes T. D., Malone R. E. and Symington L. S. 1991 Recombination in yeast. InThe molecular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics (ed. J. R. Broach, J. R. Pringle and E. W. Jones), pp. 407–521. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Radicella J. P., Park P. U. and Fox M. S. 1995 Adaptive mutation inEscherichia coli: a role for conjugation.Science 268, 418–420.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg S. M., Longerich S., Gee P. and Harris R. S. 1994 Adaptive mutation by deletions in small mononucleotide repeats.Science 265, 405–407.

    Article  PubMed  CAS  Google Scholar 

  • Sherman F. 1991 Getting started with yeast.Meth. Enzymol. 194, 3–21.

    Article  PubMed  CAS  Google Scholar 

  • Stahl F. W. 1988 A unicorn in the garden.Nature 335, 112–113.

    Article  PubMed  CAS  Google Scholar 

  • Steele D. F. and Jinks-Robertson S. 1992 An examination of adaptive reversion inSaccharomyces cerevisiae.Genetics 132, 9–21.

    PubMed  CAS  Google Scholar 

  • Steele D. F. and Jinks-Robertson S. 1993 Time-dependent mitotic recombination inSaccharomyces cerevisiae.Curr. Genet. 23, 423–429.

    Article  PubMed  CAS  Google Scholar 

  • Storchova Z., Rojas Gil A. P., Janderova B. and Vondrejs V. 1998 The involvement of theRAD6 gene in starvation-induced reverse mutation inSaccharomyces cerevisiae.Mol. Gen. Genet. 258, 546–552.

    Article  PubMed  CAS  Google Scholar 

  • Torkelson J., Harris R. S., Lombardo M.-J., Nagendran J., Thulin C. and Rosenberg S. M. 1997 Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation.EMBO J. 16, 3303–3311.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Jinks-Robertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, C.N., Jinks-Robertson, S. Comparison of spontaneous and adaptive mutation spectra in yeast. J Genet 78, 51–55 (1999). https://doi.org/10.1007/BF02994703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02994703

Keywords

Navigation