Skip to main content
Log in

Adaptive mutability in bacteria

  • Special Section: Stationary-Phase Mutations In Microorganisms
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are a common source of damage to cellular DNA, and have been implicated in mutagenesis and carcinogenesis. In bacteria, their mutagenicity appears to be mediated in part by the mutagenic SOS system and in part by SOS-independent mechanisms. Since acrobically growing log-phase cells (which by definition are well adapted to their environment) would not be especially well served by the near-continuous induction of their potentially mutagenic SOS systems, it may be that several mechanisms are required to ensure that this does not become a major problem. In addition to some well-documented ROS-scavenging and antioxidant defence systems, it is suggested that ROS-mediated cleavage of the LexA repressor may only be able to activate transcription of the mutagenically important SOS genes (e.g. theumuDC genes) ofEscherichia coli if the cells concerned also contain substantial quantities of a transcription activator known as the cAMP/CRP complex. This may be why aerobically incubated stationary-phase bacteria (which ought to contain increased levels of cAMP/CRP as a consequence of their nutritionally deprived status) often turn out to be significantly more mutable than their log-phase counterparts. Thus when bacteria are being selected for some new characteristic under nutritional duress, it may be their spontaneous mutation-generation systems that are responding adaptively, not the mutations that they produce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose M. and MacPhee D. G. 1998a Catabolite repressors are potent antimutagens inEscherichia coli plate incorporation assays: experiments with glucose, glucose 6-phosphate and methyl-α-d-glucopyranoside.Mutat. Res. 398, 175–182.

    PubMed  CAS  Google Scholar 

  • Ambrose M. and MacPhee D. G. 1998b Glucose and related catabolite repressors are powerful inhibitors of pKM101-enhanced UV mutagenesis inEscherichia coli.Mutat. Res. 422, 107–112.

    PubMed  CAS  Google Scholar 

  • Botsford J. L. and Harman J. G. 1992 Cyclic AMP in prokaryotes.Microbiol. Rev. 56, 100–122.

    PubMed  CAS  Google Scholar 

  • Bridges B. A. 1998 The role of DNA damage in stationary phase (‘adaptive’) mutation.Mutat. Res. 408, 1–9.

    PubMed  CAS  Google Scholar 

  • Cairns J., Overbaugh J. and Miller S. 1988 The origin of mutants.Nature 335, 142–145.

    Article  PubMed  CAS  Google Scholar 

  • Ennis D. G., Levine A. S., Koch W. H. and Woodgate R. 1995 Analysis ofrecA mutants with altered SOS functions.Mutat. Res. 336, 39–48.

    PubMed  CAS  Google Scholar 

  • Foster P. L. 1993 Adaptive mutation: the uses of adversity.Annu. Rev. Microbiol. 47, 467–504.

    Article  PubMed  CAS  Google Scholar 

  • Foster P. L. and Trimarchi J. M. 1994 Adaptive reversion of a frameshift mutation inEscherichia coli by simple base deletions in homopolymeric runs.Science 265, 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Humayun M. Z. 1998 SOS and Mayday: multiple inducible mutagenic pathways inEscherichia coli.Mol. Microbiol. 30, 905–910.

    Article  PubMed  CAS  Google Scholar 

  • Kim S. R., Maenhaut-Michel G., Yamada M., Yamamoto Y., Matsui K., Sofuni T., Nohmi T. and Ohmori H. 1997 Multiple pathways for SOS-induced mutagenesis inEscherichia coli: an overexpression ofdinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA.Proc. Natl. Acad. Sci. USA 94, 13792–13797.

    Article  PubMed  CAS  Google Scholar 

  • MacPhee D. G. 1985 Indications that mutagenesis in Salmonella may be subject to catabolite repression.Mutat. Res. 151, 35–41.

    PubMed  CAS  Google Scholar 

  • MacPhee D. G. 1993 Is there evidence for directed mutation in bacteria?Mutagenesis 8, 3–5.

    Article  PubMed  CAS  Google Scholar 

  • MacPhee D. G. 1994 Regulatory processes and the origins of spontaneous mutations.Mutat. Res. 307, 115–120.

    PubMed  CAS  Google Scholar 

  • MacPhee D. G. 1996 Mismatch repair as an important source of new mutations in non-dividing cells.Experientia 52, 357–363.

    Article  PubMed  CAS  Google Scholar 

  • MacPhee D. G. and Ambrose M. 1996 Spontaneous mutations in bacteria: chance or necessity?Genetica 97, 87–101.

    Article  PubMed  CAS  Google Scholar 

  • Mittler J. E. and Lenski R. E. 1990 New data on excisions of Mu fromE. coli MCS2 cast doubt on directed mutation hypothesis.Nature 344, 173–175.

    Article  PubMed  CAS  Google Scholar 

  • Modrich P. 1995 Mismatch repair, genetic stability and tumour avoidance.Philos. Trans. R. Soc. London B347, 89–95.

    Google Scholar 

  • Shinagawa H., Iwasaki H., Kato T. and Nakata A. 1988 RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis.Proc. Natl. Acad. Sci. USA 85, 1806–1810.

    Article  PubMed  CAS  Google Scholar 

  • Tang M., Bruck I., Eritja R., Turner J., Frank E. G., Woodgate R., O’Donnell M. and Goodman M. F. 1998 Biochemical basis of SOS-induced mutagenesis inEscherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD’2C mutagenic complex and RecA protein.Proc. Natl. Acad. Sci. USA 95, 9755–9760.

    Article  PubMed  CAS  Google Scholar 

  • Ullman A. and Danchin A. 1983 Role of cyclic AMP in bacteria.Adv. Cyclic Nucleotide Res. 15, 2–53.

    Google Scholar 

  • Walker G. C. 1985 Inducible DNA repair systems.Annu. Rev. Biochem. 54, 425–457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macphee, D.G. Adaptive mutability in bacteria. J Genet 78, 29–33 (1999). https://doi.org/10.1007/BF02994700

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02994700

Keywords

Navigation