Skip to main content
Log in

Inefficient mismatch repair: genetic defects and down regulation

  • Special Section: Stationary-Phase Mutations In Microorganisms
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The mismatch repair system is involved in the maintenance of genomic integrity by editing DNA replication and recombination. However, although most mutations are neutral or deleterious, a mutator phenotype due to an inefficient mismatch repair may generate advantageous variants and may therefore be selected for. We review the evidence for inefficient mismatch repair due either to genetic defects in mismatch repair genes or to physiological conditions. Among natural isolates ofEscherichia coli andSalmonella enterica, about 1% are mutator bacteria, mostly deficient in mismatch repair (most of them defective in themutS gene). Characterization of mutators derived from laboratory strains led also to the isolation of mismatch repair mutants in which the most frequently found defects are inmutL andmutS. The correlation of the size of the antimutator genes with the frequency of their defective alleles amongE. coli andSalmonella strains reveals thatmutU mutants are underrepresented. Analysis of the progeny of a defined M13 phage heteroduplex DNA transfected intoE. coli cells shows that mismatch repair efficiency progressively decreases from the end of the exponential growth in K-12 and is variable among natural isolates. Implications of this defective mismatch repair activity for evolution and tumorigenesis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chao L. and Cox E. C. 1983 Competition between high and low mutating strains ofEscherichia coli.Evolution 37, 125–134.

    Article  Google Scholar 

  • Conrad S. E., Dussik K. T. and Siegel E. C. 1976 Bacteriophage Mu-1-induced mutation tomutT inEscherichia coli.J. Bacteriol. 125, 1018–1023.

    PubMed  CAS  Google Scholar 

  • Cox E. C. and Gibson T. G. 1974 Selection for high mutation rates in chemostats.Genetics 77, 169–184.

    PubMed  CAS  Google Scholar 

  • Damagnez V., Doutriaux M. P. and Radman M. 1989 Saturation of mismatch repair in themutD5 mutator strain ofEscherichia coli.J. Bacteriol. 171, 4494–4497.

    PubMed  CAS  Google Scholar 

  • Degnen G. E. and Cox E. C. 1974 Conditional mutator gene inEscherichia coli: isolation, mapping, and effector studies.J. Bacteriol. 117, 477–487.

    PubMed  CAS  Google Scholar 

  • Drake J. W. 1991 A constant rate of spontaneous mutation in DNA-based microbes.Proc. Natl. Acad. Sci. USA 88, 7160–7164.

    Article  PubMed  CAS  Google Scholar 

  • Eisen J. A. 1998 Evolution of the MutS family of proteins: gene duplication, functional divergence and gene loss.Nucl. Acids Res. 26, 4291–4300.

    Article  PubMed  CAS  Google Scholar 

  • Feng G., Tsui H. C. and Winkler M. E. 1996 Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phaseEscherichia coli K-12 cells.J. Bacteriol. 178, 2388–2396.

    PubMed  CAS  Google Scholar 

  • Foster P. L. 1998 Adaptive mutation: has the unicorn landed?Genetics 148, 1453–1459.

    PubMed  CAS  Google Scholar 

  • Foster P. L. and Rosche W. A. 1999 Mechanisms of mutation in non-dividing cells: Insights from the study of adaptive mutation inEscherichia coli.Ann. N. Y. Acad. Sci. (in press).

  • Foster P. L. and Trimarchi J. M. 1994 Adaptive reversion of a frameshift mutation inEscherichia coli by simple base deletions in homopolymeric runs.Science 265, 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg E. C., Walker G. C. and Siede W. 1995DNA repair and mutagenesis. ASM Press, Washington, DC.

    Google Scholar 

  • Gibson T. C., Scheppe M. L. and Cox E. C. 1970 Fitness of anE. coli mutator gene.Science 169, 686–688.

    Article  PubMed  CAS  Google Scholar 

  • Glickman B. W. and Radman M. 1980Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction.Proc. Natl. Acad. Sci. USA 77, 1063–1067.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A. and Smoot J. S. 1955 A strain ofEscherichia coli with an unusually high rate of auxotrophic mutation.J. Bacteriol. 70, 588–595.

    PubMed  CAS  Google Scholar 

  • Gross M. D. and Siegel E. C. 1981 Incidence of mutator strains inEscherichia coli and coliforms in nature.Mutat. Res. 91, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D. 1983 Studies on transformation ofEscherichia coli with plasmids.J. Mol. Biol. 166, 557–580.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E. and Rosenberg S. M. 1997 Mismatch repair protein MutL becomes limiting during stationary-phase mutation.Genes Dev. 11, 2426–2437.

    Article  PubMed  CAS  Google Scholar 

  • Hoess R. H. and Herman R. K. 1975 Isolation and characterization of mutator strains ofE. coli K-12.J. Bacteriol. 122, 474–484.

    PubMed  CAS  Google Scholar 

  • Horiuchi T., Maki H. and Sekiguchi M. 1978 A new conditional lethal mutator (dnaQ49) inEscherichia coli K-12.Mol. Gen. Genet. 163, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Horst J. P., Wu T. H. and Marinus M. G. 1999Escherichia coli mutator genes.Trends Microbiol. 7, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Inouye M. and Inouye S. 1992 Retrons and multicopy single-stranded DNA.J. Bacteriol. 174, 2419–2424.

    PubMed  CAS  Google Scholar 

  • Jyssum K. 1960 Observation of two types of genetic instability inEscherichia coli.Acta. Pathol. Microbiol. Immunol. Scand. 48, 113–120.

    CAS  Google Scholar 

  • Kimura M. 1967 On the evolutionary adjustment of spontaneous mutation rates.Genet. Res. 9, 23–34.

    Article  Google Scholar 

  • Kunkel T. A. and Loeb L. A. 1984 Mutational specificity of depurination.Proc. Natl. Acad. Sci. USA 81, 1494–1498.

    Article  PubMed  CAS  Google Scholar 

  • LeClerc J. E., Li B., Payne W. L. and Cebula T. A. 1996 High mutation frequencies amongEscherichia coli andSalmonella pathogens.Science 274, 1208–1211.

    Article  PubMed  CAS  Google Scholar 

  • LeClerc J. E., Payne W. L., Kupchella E. and Cebula T. A. 1998 Detection of mutator subpopulations inSalmonella typhimurium LT2 by reversion ofhis alleles.Mutat. Res. 400, 89–97.

    PubMed  CAS  Google Scholar 

  • Leigh E. G. 1973 The evolution of mutation rates.Genetics 73, 1–18.

    PubMed  Google Scholar 

  • Liberfarb R. M. and Bryson V. 1970 Isolation, characterization, and genetic analysis of mutator genes inEscherichia coli B and K-12.J. Bacteriol. 104, 363–375.

    PubMed  CAS  Google Scholar 

  • Loeb L. A. 1998 Cancer cells exhibit a mutator phenotype.Adv. Cancer Res. 72, 25–56.

    Article  PubMed  CAS  Google Scholar 

  • Maas W. K., Wang C., Lima T., Zubay G. and Lim D. 1994 Multicopy single-stranded DNAs with mismatched base pairs are mutagenic inEscherichia coli.Mol. Microbiol. 14, 437–441.

    Article  PubMed  CAS  Google Scholar 

  • Maas W. K., Wang C., Lima T., Hach A. and Lim D. 1996 Multicopy single-stranded DNA ofEscherichia coli enhances mutation and recombination frequencies by titrating MutS protein.Mol. Microbiol. 19, 505–509.

    Article  PubMed  CAS  Google Scholar 

  • Magnasco M. O. and Thaler D. S. 1996 Changing the pace of evolution.Phys. Lett. A221, 287–292.

    Google Scholar 

  • Mao E. F., Lane L., Lee J. and Miller J. H. 1997 Proliferation of mutators in a cell population.J. Bacteriol. 179, 417–422.

    PubMed  CAS  Google Scholar 

  • Matic I., Rayssiguier C. and Radman M. 1995 Interspecies gene exchange in bacteria: The role of SOS and mismatch repair systems in evolution of species.Cell 80, 507–515.

    Article  PubMed  CAS  Google Scholar 

  • Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E.et al. 1997 Highly variable mutation rates in commensal and pathogenicE. coli.Science 277, 1833–1834.

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M. and Gerits J. 1983 Transduction ofEscherichia coli trp genes inSalmonella typhimurium and effect of N-methyl-N′-nitro-N-nitrosoguanidine on transduction with heterogenotic DNA.J. Gen. Microbiol. 129, 321–335.

    PubMed  CAS  Google Scholar 

  • Miller J. H. 1996 Spontaneous mutators in bacteria: insight into pathways of mutagenesis and repair.Annu. Rev. Microbiol. 50, 625–643.

    Article  PubMed  CAS  Google Scholar 

  • Modrich P. and Lahue R. 1996 Mismatch repair in replication fidelity, genetic recombination, and cancer biology.Annu. Rev. Biochem. 65, 101–133.

    Article  PubMed  CAS  Google Scholar 

  • Moxon E. R., Rainey P. B., Nowak M. A. and Lenski R. E. 1994 Adaptive evolution of highly mutable loci in pathogenic bacteria.Curr. Biol. 4, 24–33.

    Article  PubMed  CAS  Google Scholar 

  • Ninio J. 1991 Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates.Genetics 129, 957–962.

    PubMed  CAS  Google Scholar 

  • Pang P. P., Lundberg A. S. and Walker G. C. 1985 Identification and characterization of themutL andmutS gene products ofSalmonella typhimurium LT2.J. Bacteriol. 163, 1007–1015.

    PubMed  CAS  Google Scholar 

  • Radman M., Dohet C., Bourguignon M.-F., Doubleday O. P. and Lecomte P. 1981 High fidelity devices in the reproduction of DNA. InChromosome damage and repair (ed. E. Seeberg and K. Kleppe), pp. 431–445. Plenum, New York.

    Google Scholar 

  • Radman M., Matic I., Halliday J. A. and Taddei F. 1995 Editing DNA replication and recombination by mismatch repair: from bacterial genetics to mechanisms of predisposition to cancer in humans.Philos. Trans. R. Soc. London B347, 97–103.

    Google Scholar 

  • Rayssiguier C., Thaler D. S. and Radman M. 1989 The barrier to recombination betweenEscherichia coli andSalmonella typhimurium is disrupted in mismatch-repair mutants.Nature 342, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Richards B., Zhang H., Phear G. and Meuth M. 1997 Conditional mutator phenotypes in hMSH2-deficient tumor cell lines.Science 277, 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg S., Longerich S., Gee P. and Harris R. 1994 Adaptive mutation by deletions in small mononucleotide repeats.Science 265, 405–407.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg S. M., Thulin C. and Harris R. S. 1998 Transient and heritable mutators in adaptive evolution in the lab and in nature.Genetics 148, 1559–1566.

    PubMed  CAS  Google Scholar 

  • Schaaper R. M. 1988 Mechanisms of mutagenesis in theEscherichia coli mutatormutD5: role of DNA mismatch repair.Proc. Natl. Acad. Sci. USA 85, 8126–8130.

    Article  PubMed  CAS  Google Scholar 

  • Schaaper R. M. 1989Escherichia coli mutatormutD5 is defective in themutHLS pathway of mismatch repair.Genetics 121, 205–212.

    PubMed  CAS  Google Scholar 

  • Schaaper R. M. and Radman M. 1989 The extreme mutator effect ofEscherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors.EMBO J. 8, 3511–3516.

    PubMed  CAS  Google Scholar 

  • Shanabruch W. G., Behlau I. and Walker G. C. 1981 Spontaneous mutators ofSalmonella typhimurium LT2 generated by insertion of transposable elements.J. Bacteriol 147, 827–835.

    PubMed  CAS  Google Scholar 

  • Siegel E. C. 1983 TheEscherichia coli uvrD gene is not inducible by DNA damage.Mol. Gen. Genet. 191, 397–400.

    Article  PubMed  CAS  Google Scholar 

  • Siegel E. C. and Bryson V. 1964 Selection of resistant strains ofEscherichia coli by antibiotics and antibacterial agents: role of normal and mutator strain. InAntimicrobial agents and chemotherapy 1963 (ed. J. C. Sylvester), pp. 629–634. American Society for Microbiology, Ann Arbor.

    Google Scholar 

  • Siegel E. C., Wain S. L., Meltzer S. F., Binion M. L. and Steinberg J. L. 1982 Mutator mutations inEscherichia coli induced by the insertion of phage mu and the transposable resistance elements Tn5 and Tn10.Mutat. Res. 93, 25–33.

    PubMed  CAS  Google Scholar 

  • Sniegowski P. D., Gerrish P. J. and Lenski R. E. 1997 Evolution of high mutation rates in experimental populations ofE. coli.Nature 387, 703–705.

    Article  PubMed  CAS  Google Scholar 

  • Stahl F. 1988 A unicorn in the garden.Nature 335, 112–113.

    Article  PubMed  CAS  Google Scholar 

  • Taddei F., Radman M., Maynard Smith J., Toupance B., Gouyon P. H. and Godelle B. 1997a Role of mutators in adaptive evolution.Nature 387, 700–702.

    Article  PubMed  CAS  Google Scholar 

  • Taddei F., Vulic M., Radman M. and Matic I. 1997b Genetic variability and adaptation to stress. InEnvironmental stress, adaptation, and evolution (ed. R. Bijlsma and V. Loeschcke), pp. 271–290. Birkhäuser, Basel.

    Google Scholar 

  • Tenaillon O., Toupance B., Le Nagard H., Taddei F. and Godelle B. 1999 Mutators, population size, adaptive landscape, and the adaptation of asexual populations of bacteria.Genetics (in press).

  • Torkelson J., Harris R. S., Lombardo M.-J., Nagendran J., Thulin C.et al. 1997 Genome-wide hypermutation in a sub-population of stationary-phase cells underlies recombination-dependent adaptive mutation.EMBO J. 16, 3303–3311.

    Article  PubMed  CAS  Google Scholar 

  • Treffers H. P., Spinelli V. and Belser N. O. 1954 A factor (or mutator gene) influencing mutation rates inE. coli.Proc. Natl. Acad. Sci USA 40, 1064–1071.

    Article  PubMed  CAS  Google Scholar 

  • Tsui H.-C. T., Zhao G., Feng G., Leung H.-C. E. and Winkler M. E. 1994 ThemutL repair gene ofEscherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase.Mol. Microbiol. 11, 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Tsui H.-C. T., Feng G. and Winkler M. E. 1997 Negative regulation ofmutS andmutH repair gene expression by the Hfq and RpoS global regulators ofEscherichia coli K-12.J. Bacteriol. 179, 7476–7487.

    PubMed  CAS  Google Scholar 

  • Varlet I., Canard B., Brooks P., Cerovic G. and Radman M. 1996 Mismatch repair in Xenopus egg extracts: DNA strand breaks act as signals rather than excision points.Proc. Natl. Acad. Sci. USA 93, 10156–10161.

    Article  PubMed  CAS  Google Scholar 

  • Vulic M., Dionisio F., Taddei F. and Radman M. 1997 Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria.Proc. Natl. Acad. Sci. USA 94, 9763–9767.

    Article  PubMed  CAS  Google Scholar 

  • Wu T.-H. and Marinus M. G. 1994 Dominant negative mutations in themutS gene ofEscherichia coli.J. Bacteriol. 176, 5393–5400.

    PubMed  CAS  Google Scholar 

  • Zamenhof P. J. 1966 A genetic locus responsible for generalized high mutability inEscherichia coli.Proc. Natl. Acad. Sci. USA 56, 845–852.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Taddei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brégeon, D., Matic, I., Radman, M. et al. Inefficient mismatch repair: genetic defects and down regulation. J Genet 78, 21–28 (1999). https://doi.org/10.1007/BF02994699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02994699

Keywords

Navigation