Advertisement

International Journal of Hematology

, Volume 73, Issue 4, pp 476–482 | Cite as

Selective Transduction of HIV-1-Infected Cells by the Combination of HIV and MMLV Vectors

  • Noriyasu Sakai
  • Koichi Miyake
  • Noriko Suzuki
  • Takashi Shimada
Rapid Communication
  • 28 Downloads

Abstract

Human immunodeficiency virus 1 (HIV-1)-infected cells are important targets of gene therapy for acquired immune deficiency syndrome. We have developed a novel strategy for targeted gene transfer into HIV-1-infected cells based on 2-step gene transfer. The first step involves the stable introduction of the HIV vector containing the ecotropic Moloney murine leukemia virus (MMLV) receptor gene (EcoRec) into human CD4+ T cells as a molecular switch. Because the HIV-long terminal repeat (HIV-LTR) is Tat inducible, it is expected that EcoRec is expressed only after HIV-1 infection. Northern blot analysis and a retrovirus binding assay confirmed that the HIV-LTR of the integrated vector was silent in transduced cells but strongly transactivated in HIV-1 infection. High levels of EcoRec expression were observed only in HIV-1-infected cells. These cells became highly susceptible to ecotropic MMLV infection and, therefore, in the second step, HIV-1-infected cells were selectively transduced with ecotropic MMLV vectors. More than 70% of HIV-1-infected cells were transduced by this strategy. These findings indicate that this 2-step method can be used for selective and stable gene transfer into HIV-1-infected cells.

Key words

Gene therapy Viral vectors Targeting HIV-1 infection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baltimore D. Intracellular immunization.Nature. 1988;335:395–396.CrossRefPubMedGoogle Scholar
  2. 2.
    Savarino A, Pescarmona GP, Turco E, Gupta P. The biochemistry of gene therapy for AIDS.Clin Chem Lab Med. 1998;36:205–210.CrossRefPubMedGoogle Scholar
  3. 3.
    Amado RG, Mitsuyasu RT, Zack JA. Gene therapy for the treatment of AIDS: animal models and human clinical experience.Front Biosci. 1999;4:468–475.Google Scholar
  4. 4.
    Nienhuis AW, Bertran J, Hargrove P, Vanin E, Yang Y. Gene transfer into hematopoietic cells.Stem Cells. 1997;15(suppl 1):123–134.CrossRefPubMedGoogle Scholar
  5. 5.
    Shimada T, Fujii H, Mitsuya H, Nienhuis AW. Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector.J Clin Invest. 1991;88:1043–1047.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain.Cell. 1986;47:333–348.CrossRefPubMedGoogle Scholar
  7. 7.
    Hoxie JA, Alpers JD, Rackowski JL, et al. Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV.Science. 1986;234:1123–1127.CrossRefPubMedGoogle Scholar
  8. 8.
    Suzuki S, Shimada T. A retroviral vector capable of targeted gene transfer into cells expressing HIV envelope glycoprotein.Biochem Biophys Res Commun. 2000;271:672–676.CrossRefPubMedGoogle Scholar
  9. 9.
    Kasahara N, Dozy AM, Kan YW. Tissue-specific targeting of retro-viral vectors through ligand-receptor interactions.Science. 1994;266:1373–1376.CrossRefPubMedGoogle Scholar
  10. 10.
    Han X, Kasahara N, Kan YW. Ligand-directed retroviral targeting of human breast cancer cells.Proc Natl Acad Sci U S A. 1995;92:9747–9751.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Somia NV, Zoppe M, Verma IM. Generation of targeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery.Proc Natl Acad Sci U S A. 1995;92:7570–7574.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Marin M, Noel D, Valsesia-Wittman S, et al. Targeted infection of human cells via major histocompatibility complex class I molecules by moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins.J Virol. 1996;70:2957–2962.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Konishi H, Ochiya T, Chester KA, et al. Targeting strategy for gene delivery to carcinoembryonic antigen-producing cancer cells by retrovirus displaying a single-chain variable fragment antibody.Hum Gene Ther. 1998;9:235–248.CrossRefPubMedGoogle Scholar
  14. 14.
    Cosset F-L, Morling FJ, Takeuchi Y, Weiss RA, Collins MKL, Russell SJ. Retroviral retargeting by envelopes expressing an N-terminal binding domain.J Virol. 1995;69:6314–6322.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Schnierle BS, Groner B. Retroviral targeted delivery.Gene Ther. 1996;3:1069–1073.PubMedGoogle Scholar
  16. 16.
    Cosset F-L, Russell SJ. Targeting retrovirus entry.Gene Ther. 1996;3:946–956.PubMedGoogle Scholar
  17. 17.
    Igarashi T, Suzuki S, Takahashi M, Tamaoki T, Shimada T. A novel strategy of cell targeting based on tissue-specific expression of the ecotropic retrovirus receptor gene.Hum Gene Ther. 1998;9:2691–2698.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fujii I, Suzuki S, Igarashi T, Matsukura M, Miike T, Shimada T. Targeted and stable gene delivery into muscle cells by a two-step transfer system.Biochem Biophys Res Commun. 2000;13:615–618.Google Scholar
  19. 19.
    Sodroski JG, Rosen CA, Haseltine WA. Trans-acting transcriptional activation of the long terminal repeat of human T-lymphotropic viruses in infected cells.Science. 1984;225:381–385.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yoshimatsu T, Tamura M, Kuriyama S, Ikenaka K. Improvement of retroviral packaging cell lines by introducing the polyoma early region.Hum Gene Ther. 1998;9:161–172.CrossRefPubMedGoogle Scholar
  21. 21.
    Kotani H, Newton PB 3rd, Zhang S, et al. Improved methods of retroviral vector transduction and production for gene therapy.Hum Gene Ther. 1994;5:19–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Fujii H, Shimada T. Isolation and characterization ofcDNA clones derived from the divergently transcribed gene in the region upstream from the human dihydrofolate reductase gene.J Biol Chem. 1989;264:10057–10064.PubMedGoogle Scholar
  23. 23.
    Bertran J, Miller JL, Yang Y, et al. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors.J Virol. 1996;70:6759–6766.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lieber A, Peeters MJ, Kay MA. Adenovirus-mediated transfer of the amphotropic retrovirus receptor cDNA increases retroviral transduction in cultured cells.Hum Gene Ther. 1995;6:5–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Yamaguchi S, Wakimoto H, Yoshida Y, et al. Enhancement of retro-virus-mediated gene transduction efficiency by transient overex-pression of the amphotropic receptor, GLVR-2.Nucl Acids Res. 1995;23:2080–2081.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Qing K, Bachelot T, Mukherjee P, et al. Adeno-associated virus type 2-mediated transfer of ecotropic retorovirus receptorcDNA allows ecotropic retroviral transduction of established and primary human cells.J Virol. 1997;71:5663–5667.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Miyake K, Tohyama T, Shimada T. Two-step gene transfer using an adenoviral vector carrying the CD4 gene and human immunodeficiency viral vectors.Hum Gene Ther. 1996;7:2281–2286.CrossRefPubMedGoogle Scholar
  28. 28.
    Harrison GS, Maxwell F, Long CJ, Rosen CA, Golde LM, Maxwell IH. Activation of a diphtheria toxin A gene by expression of human immunodeficiency virus type-1 tat and rev proteins in transfected cells.Hum Gene Ther. 1991;2:53–60.CrossRefPubMedGoogle Scholar
  29. 29.
    Caruso M, Klatzmann D. Selective killing of CD4+ cells harboring a human immunodeficiency virus-inducible suicide gene prevents viral spread in an infected cell population.Proc Natl Acad Sci U S A. 1992;89:182–186.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schnell MJ, Johnson JE, Buonocore L, Rose JK. Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection.Cell. 1997;90:849–857.CrossRefPubMedGoogle Scholar
  31. 31.
    Mebatsion T, Finke S, Weiland F, Conzelmann K-K. A CXCR4/CD4 pseudotype rhabdovirus that selctively infects HIV-1 envelope protein-expressing cells.Cell. 1997;90:841–847.CrossRefPubMedGoogle Scholar
  32. 32.
    Endres MJ, Jaffer S, Haggarty B, et al. Targeting of HIV- and SIV-infected cells by CD4-chemokine receptor pseudotypes.Science. 1997;278:1462–1464.CrossRefPubMedGoogle Scholar
  33. 33.
    Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors.Science. 2000;283:682–686.CrossRefGoogle Scholar
  34. 34.
    Case SS, Price MA, Jordan CT, et al. Stable transduction of quiescent CD34+CD38- human hematopoietic cells by HIV-1-based lentiviral vectors.Proc Natl Acad Sci U S A. 1999;96:2988–2993.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cornetta K, Moen RC, Culver K, et al. Amphotropic murine leukemia retrovirus is not an acute pathogen for primates.Hum Gene Ther. 1990;1:15–30.CrossRefPubMedGoogle Scholar
  36. 36.
    Miyao Y, Ikenaka K, Kishima H, et al. FUT-175, a synthetic inhibitor of the complement pathway,protects against the inactivation of infectious retrovirus by human serum.Hum Gene Ther. 2000;8:1575–1583.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2001

Authors and Affiliations

  • Noriyasu Sakai
    • 1
    • 2
  • Koichi Miyake
    • 1
    • 3
  • Noriko Suzuki
    • 1
    • 3
  • Takashi Shimada
    • 1
    • 3
    • 4
  1. 1.Department of Biochemistry and Molecular BiologyCenter for Advanced Medical Technology, Nippon Medical SchoolTokyoJapan
  2. 2.Department of Dermatology;Center for Advanced Medical TechnologyNippon Medical SchoolTokyoJapan
  3. 3.Division of Gene Therapy ResearchCenter for Advanced Medical Technology, Nippon Medical SchoolTokyoJapan
  4. 4.Department of Biochemistry and Molecular BiologyNippon Medical SchoolTokyoJapan

Personalised recommendations