Skip to main content
Log in

Spreading of wheat germ agglutinin-induced erythrocyte contact by formation of spatially discrete contacts

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

The time dependence of agglutination and cell-cell contact spreading in human erythrocytes exposed to wheat germ agglutinin (WGA) was characterized by light and electron microscopy. Cells (3×107/mL) had a threshold lectin concentration in the range of 0.6–2.0 μg/mL for initial cell contact. Spreading was essentially completed within 60 and 2 min in undisturbed and gently agitated suspensions, respectively. The cells in large WGA agglutinates retained features of their initial disk form in contrast to the convex outlines of polycation or polyethylene glycol-induced agglutinates.

Spreading of contact area was accompanied by development of a pattern of discrete contact regions separated by a distance of the order of 1 μm. Freeze fracture electron microscopy and studies with ferritinlabeled WGA showed no significant aggregation of intramembrane particles or specific lectin receptors under conditions when contact spreading occurred. It is argued that flow stress effects on cells in suspended agglutinates give rise to a situation where opposite membranes, at the leading edge of cell contact, are separated by a thin aqueous layer. When this intercellular water layer exceeds a critical length, it becomes unstable. The layer breaks up by surface wave development to form an array of intracellular water spaces. Formation of the aqueous spaces causes opposite membrane regions to move synchronously toward each other. Lectin molecules crosslink the wave crests to give spatially periodic contact points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lovrien, R. E. and Anderson, R. A. (1980),J. Cell Biol. 85, 534–548.

    Article  PubMed  CAS  Google Scholar 

  2. Smith, L. and Hochmuth, R. M. (1982),J. Cell Biol. 94, 7–11.

    Article  PubMed  CAS  Google Scholar 

  3. Jan, K. M. (1979),Biorheology 16, 137–148.

    PubMed  CAS  Google Scholar 

  4. Katchalsky, A., Danon, D., Nevo, A., and de Vries, A. (1959),Biochirn. Biophys. Acta 33, 120–138.

    Article  CAS  Google Scholar 

  5. Coakley, W. T., Hewison, L. A. and Tilley, D. (1985),Eur. Biophys. J. 13, 123–130.

    Article  PubMed  CAS  Google Scholar 

  6. Knutton, S. (1979),J. Cell Sci. 36, 61–72.

    PubMed  CAS  Google Scholar 

  7. Tilley, D., Coakley, W. T., Gould, R. K., Payne, S. E. and Hewison, L. A. (1987),Eur. Biophys. J. 14, 499–507.

    Article  PubMed  CAS  Google Scholar 

  8. Evans, E. A. and Leung, A. J. (1984),J. Cell Biol. 98, 1201–1208.

    Article  PubMed  CAS  Google Scholar 

  9. Hewison, L. A., Coakley, W. T. and Meyer, H. W. (1988),Cell Biophys. 13, 151–157.

    PubMed  CAS  Google Scholar 

  10. Pinto da Silva, P. and Torrisi, M. R. (1982),J. Cell Biol. 93, 463–469.

    Article  Google Scholar 

  11. Adair, W. L. and Kornfeld, S. (1974),J. Biol Chem. 249, 4696–4704.

    CAS  Google Scholar 

  12. Goldsmith, H. L. (1970),Thromobosis et Diathesis Haemorrhagia (Suppl. 40), 91–110.

  13. Grieg, R. G. and Brooks, D. E. (1979),Nature 282, 738–739.

    Article  Google Scholar 

  14. van Oss, C. J. and Coakley, W. T. (1988),Cell Biophysics 13, 141–150.

    PubMed  Google Scholar 

  15. Jan, K. M. and Chien, S. (1973),J. Gen. Physiol. 61, 638–654.

    Article  PubMed  CAS  Google Scholar 

  16. Coakley, W. T., Darmani, H., Irwin, S., Robson, K. and Gallez, D. (1989),Studia Biophysica,127, 69–74.

    Google Scholar 

  17. Gallez, D. and Coakley, W. T. (1986),Prog. Biophys. Mol. Biol. 48, 155–199.

    Article  PubMed  CAS  Google Scholar 

  18. Fowler, V. M. (1986),Nature 322, 777, 778.

    Article  PubMed  CAS  Google Scholar 

  19. Gahmberg, C. G., Tauren, G., Virtanen, I. and Wartiovaara, J. (1978),J. Supramol. Struc. 8, 337–347.

    Article  CAS  Google Scholar 

  20. Wise, G. E., Oakford, L. X. and Cantu-Crouch, D. B. (1987),Cell Tissue Res. 248, 267–273.

    Article  PubMed  CAS  Google Scholar 

  21. Nicolson, G. L. and Painter, R. G. (1973),J. Cell Biol. 59, 395–406.

    Article  PubMed  CAS  Google Scholar 

  22. Pinto da Silva (1972),J. Cell Biol. 53, 777–787.

    Article  Google Scholar 

  23. Elgsaeter, A. and Branton, D. (1974),J. Cell Biol. 63, 1018–1030.

    Article  PubMed  CAS  Google Scholar 

  24. Bretscher, M. S. and Raff, M. C. (1975),Nature 258, 43–49.

    Article  PubMed  CAS  Google Scholar 

  25. Wise, G. E., Shienvold, F. L. and Rubin, R. W. (1978),J. Cell Sci. 30, 63–76.

    PubMed  CAS  Google Scholar 

  26. Tan, S. S. and Morris-Kay, G. M. (1986),J. Embryol. Exp. Morphol. 98, 21–58.

    PubMed  CAS  Google Scholar 

  27. Johnson, L. V. (1986),Developmental Biol. 113, 1–9.

    Article  CAS  Google Scholar 

  28. Russel, L., Peterson, R. and Freud, M. (1979),J. Exp. Zool. 208, 41–56.

    Article  Google Scholar 

  29. Rotrosen, D., Edwards, J. E., Jr., Gibson, T. R., Moore, J. C., Cohen, A. H., and Green, I. (1985),J. Infect. Dis. 152, 1264–1274.

    PubMed  CAS  Google Scholar 

  30. King, C. A., Cooper, L. and Preston, T. M. (1983),Protoplasma 118, 10–18.

    Article  Google Scholar 

  31. Izzard, C. S. and Lochner, L. P. (1976),J. Cell Sci. 21, 129–151.

    PubMed  CAS  Google Scholar 

  32. Baranowski, Z., Kuznicki, I., Opas, M., and Nencki, M. (1977),5th Int. Congress of Protozoology, New York, p. 474.

  33. Vasiliev, J. M. (1985),Biophys. Acta 780, 21–65.

    CAS  Google Scholar 

  34. Fricke, K. and Sackmann, E. (1984),Biochim. Biophys. Acta 803, 145–152.

    Article  PubMed  CAS  Google Scholar 

  35. Izzard, C. S. and Lochner, L. P. (1980),J. Cell Sci. 42, 81–116.

    PubMed  CAS  Google Scholar 

  36. Preston, T. M. and King, C. A. (1978),J. Cell Sci. 34, 145–158.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darmani, H., Coakley, W.T., Hann, A.C. et al. Spreading of wheat germ agglutinin-induced erythrocyte contact by formation of spatially discrete contacts. Cell Biophysics 16, 105–126 (1990). https://doi.org/10.1007/BF02991425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02991425

Index Entries

Navigation