Skip to main content
Log in

Suboptimal levels of dietary copper vary immunoresponsiveness in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of severe, moderate, and mild copper deficiencies on cellular and humoral immunity were studied. Fifty male Sprague-Dawley rats, 5 wk of age, were fed diets containing 0.5, 2.0, 3.5, or 5.0 μg Cu/g for either 4 or 8 wk. Ten of the rats were fed the control diet, but were pair-fed with the 0.5-μg/g treatment group. All rats were immunized once with sheep red blood cells. Mean plasma-copper concentration reflected the dietary levels of copper, and ceruloplasmin activity correlated highly to plasma copper. Rats consuming suboptimal levels of copper responded differently to the deficiencies, so copper status varied among those animals. After 8 wk, cell proliferation, when stimulated by phytohemagglutinin, was dependent on the copper status of the animal. Severely deficient rats had consistently lower lymphocyte stimulation indexes for phytohemagglutinin and concanavalin A, but specific antibody response was not reduced. Immunoglobulin G (IgG) concentrations were variable for all rats, and immunoglobulin M (IgM) concentrations were lower for the severely deficient rats. Suboptimal dietary copper may alter immune function in rats, depending on the ensuing effect on copper status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Davis and W. Mertz,Trace Elements in Human and Animal Nutrition, vol. 1, W. Mertz ed., Academic, San Diego, CA, 1987, pp. 301–364.

    Google Scholar 

  2. J. R. Prohaska and O. A. Lukasewycz,Science 213, 559–561 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. P. M. Newberne, C. E. Hunt, and V. R. Young,Br. J. Exp. Pathol 49, 448–457 (1968).

    PubMed  CAS  Google Scholar 

  4. K. M. Nauss and P. M. Newberne,Trace Element Metabolism in Man and Animals, J. M. Gawthorne, J. McC. Howell, and C. L. White, eds., Springer-Verlag, New York, 1981, pp. 603–610.

    Google Scholar 

  5. P. M. Newberne,Nutrition, Immunity and Infection, R. K. Chandra and P. M. Newberne, eds., Plenum, New York, 1977, pp. 127–180.

    Google Scholar 

  6. R. L. Gross and P. M. Newberne,Physiol. Rev. 60, 188–302 (1980).

    PubMed  CAS  Google Scholar 

  7. D. G. Jones and N. F. Suttle,J. Comp. Pathol 93, 143–149 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. O. A. Lukasewycz and J. R. Prohaska,Nutr. Res. 3, 335–341 (1983).

    Article  CAS  Google Scholar 

  9. O. A. Lukasewycz, K. L. Kolquist, and J. R. Prohaska,Nutr. Res. 7, 43–52 (1987).

    Article  CAS  Google Scholar 

  10. O. A. Lukasewycz, J. R. Prohaska, S. G. Meyer, J. R. Schmidtke, S. M. Hatfield, and P. Marder,Infect. Immun. 48, 644–647 (1985).

    PubMed  CAS  Google Scholar 

  11. M. A. Davis, W. T. Johnson, M. Briske-Anderson, and T. R. Kramer,Nutr. Res. 7, 211–222 (1987).

    Article  CAS  Google Scholar 

  12. T. R. Kramer, W. T. Johnson, and M. Briske-Anderson,J. Nutr. 118, 214–221 (1988).

    PubMed  CAS  Google Scholar 

  13. U. Babu and M. L. Failla,Nutr. Res. 9, 273–282 (1989).

    Article  CAS  Google Scholar 

  14. O. A. Lukasewycz and J. R. Prohaska,Fed. Proc. 40, 918 (1981).

    Google Scholar 

  15. L. D. Koller, S. A. Mulhern, N. C. Frankel, M. G. Steven, and J. R. Williams,Am. J. Clin. Nutr. 45, 997–1006 (1987).

    PubMed  CAS  Google Scholar 

  16. S. A. Mulhern and L. D. Koller,J. Nutr. 118, 1041–1047 (1988).

    PubMed  CAS  Google Scholar 

  17. M. L. Failla, U. Babu, and K. E. Seidel,J. Nutr. 118, 487–496 (1988).

    PubMed  CAS  Google Scholar 

  18. American Institute of Nutrition,J. Nutr. 107, 1340–1348 (1977).

    Google Scholar 

  19. J. S. Garvey, N. E. Cremer, and D. H. Sussdorf,Methods in Immunology, W. A. Benjamin, Reading, MA, 1977, pp. 140–143, 209–210.

    Google Scholar 

  20. G. W. Carthew and R. L. Dey,NZ Vet. J. 33, 168–170 (1985).

    CAS  Google Scholar 

  21. H. P. Lehmann, K. H. Schosinsky, and M. F. Beeler,Clin. Chem. 20, 1564–1567 (1974).

    PubMed  CAS  Google Scholar 

  22. J. W. Lo and J. J. McClure,Laboratory Techniques of Veterinary Clinical Immunology, O. Barta, ed., Charles C. Thomas, Springfield, IL, 1984 pp. 65–85.

    Google Scholar 

  23. O. Barta, S. S. Pourciau, and N. L. Hubbert,Laboratory Techniques of Veterinary Clinical Immunology, O. Barta, ed. Charles C. Thomas, Springfield, IL, 1984, pp. 123–137.

    Google Scholar 

  24. R. G. D. Steel and J. H. Torrie,Principles and Procedures of Statistics McGraw-Hill, New York (1980).

    Google Scholar 

  25. J. R. Prohaska and O. A. Lukasewycz,J. Nutr. 119, 922–931 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windhauser, M.M., Kappel, L.C., McClure, J. et al. Suboptimal levels of dietary copper vary immunoresponsiveness in rats. Biol Trace Elem Res 30, 205–217 (1991). https://doi.org/10.1007/BF02991415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02991415

Index Entries

Navigation