Skip to main content
Log in

Effect of neutral salts on the formation and dissociation of protein aggregates

  • Published:
Journal of Solid-Phase Biochemistry Aims and scope Submit manuscript

Abstract

A theoretical framework is presented for the treatment of solvent-mediated behavior observed with polymerizing systems. It has been found that the surface tension and the bulk dielectric constant of the medium play a major role in determining the energetics of the polymerization or depolymerization process. The effect of salt is accounted for by specific binding, by electrostatic effects, which are treated on the basis of the Debye-Hückel theory, and by salt-induced changes in the surface tension. Literature data on the effect of various salts on the depolymerization of apo-D(—)-β-hydroxybutyrate dehydrogenase observed chromatographically, on the actin G-F equilibrium, and in flagellin polymerization show the theoretically predicted behavior. The influence of organic solvents in the medium can be treated in a similar fashion as demonstrated by observed dependence of the activation energy of actin-F polymerization on the concentration of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horvath, C., Melander, W., andMolnar, I. (1976) J. Chromatogr. 125: 129.

    Article  CAS  Google Scholar 

  2. Horvath, C., Melander, W., andMolnar, I. (1977) Anal. Chem. 49: 142.

    Article  CAS  Google Scholar 

  3. Melander, W., andHorvath, C. (1977) Arch. Biochem. Biophys., 183: 200.

    Article  CAS  Google Scholar 

  4. Sinanoglu, O., (1968)In Molecular Associations in Biology,Pullman, B. (ed.), Academic Press, New York, pp. 427–445.

    Google Scholar 

  5. Sinanoglu, O., andAbdulnur, S. (1965) Fed. Proc. 24(2): 5.

    Google Scholar 

  6. Sinanoglu, O. (1967) Adv. Chem. Phys. 12: 283.

    Article  CAS  Google Scholar 

  7. Halicioglu, T., andSinanoglu, O. (1969) Ann. N.Y. Acad. Sci. 158: 308.

    Article  CAS  Google Scholar 

  8. Sinanoglu, O. (1967) Chem. Phys. Lett. 1: 340.

    Article  CAS  Google Scholar 

  9. Sinanoglu, O. (1974) Theor. Chim. Acta 33: 279.

    Article  CAS  Google Scholar 

  10. Halicioglu, T. (1968) Ph.D. Thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  11. Abdulnur, S. (1966) Ph.D. Thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  12. Kirkwood, J. G. (1934) J. Chem. Phys. 2: 351.

    Article  CAS  Google Scholar 

  13. Kirkwood, J. G. (1943)In Proteins, Amino Acids and Peptides,Cohn, E. J., andEdsall, J. T. (eds.), Reinhold, New York, Chapter 12.

    Google Scholar 

  14. Linderstrøm-Lang, K. (1953) C. R. Trav. Lab. Carlsberg Ser. Chim. 28: 281.

    Google Scholar 

  15. Hamaker, H. C. (1937) Physica 4: 1058.

    Article  CAS  Google Scholar 

  16. Verwey, E. J., andOverbeek, J. Th. G. (1948) Theory of the Stability of Sol Particles Having an Electric Double Layer, American Elsevier, New York.

    Google Scholar 

  17. Schellman, J. A. (1975) Biopolymers 14: 999.

    Article  CAS  Google Scholar 

  18. Oosawa, F., andAsakura, S. (1975) Thermodynamics of the Polymerization of Protein, Academic Press, New York.

    Google Scholar 

  19. Glasstone, S., Laidler, K. J., andEyring, H. (1941) The Theory of Rate Processes, McGraw-Hill, New York.

    Google Scholar 

  20. Kasai, M. (1969) Biochim. Biophys. Acta 180: 399.

    Article  CAS  Google Scholar 

  21. Bock, H. G., Skene, P., Fleischer, S., Cassidy, P., andHarshman, S. (1976) Science 191: 380.

    Article  CAS  Google Scholar 

  22. Nagy, B., andJencks, W. P. (1965) J. Am. Chem. Soc. 87: 2480.

    Article  CAS  Google Scholar 

  23. Holtzer, A., Wang, T. Y., andNoelken, M. E. (1960) Biochim. Biophys. Acta 42:453.

    Article  CAS  Google Scholar 

  24. Taniguchi, M. (1969) Biochim. Biophys. Acta 181: 244.

    CAS  Google Scholar 

  25. International Critical Tables (1929) Vol. 4, McGraw-Hill, New York.

  26. Wakabayashi, K., Hotani, H., andAsakura, S. (1969) Biochim. Biophys. Acta 175: 195.

    CAS  Google Scholar 

  27. Timmermans, J. (1960) Physiochemical Constants of Binary Systems in Concentrated Solutions, Vol. 4, Wiley-Interscience, New York.

    Google Scholar 

  28. Åkerlof, G. (1932) J. Am. Chem. Soc. 54: 4125.

    Article  Google Scholar 

  29. Minakata, A. (1966) Biochim. Biophys. Acta 126: 570.

    Article  CAS  Google Scholar 

  30. Kobayasi, S., Asai, H., andOosawa, F. (1964) Biochim. Biophys. Acta 88: 528.

    CAS  Google Scholar 

  31. Oosawa, F. (1957) J. Polymer Sci. 26:299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melander, W., Horvath, C. Effect of neutral salts on the formation and dissociation of protein aggregates. Journal of Solid-Phase Biochemistry 2, 141–161 (1977). https://doi.org/10.1007/BF02991404

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02991404

Keywords

Navigation