A new plant-based bioassay for aquatic sediments

Research Article


Background, Goal and Scope

To date, standardised bioassays for the assessment of the ecotoxicological potential in sediments and dredged material use test organisms like bacteria, algae and crustaceae. This paper presents the development and application of a novel sediment contact test (whole sediment) withMyriophyllum aquaticum, a representative of rooted aquatic macrophytes. The aim of the present study is to demonstrate the value of a sediment contact test with rooted macrophytes as a supplement to existing test batteries in order to improve the assessment of sediment toxicity.


The newly developed sediment contact test withMyriophylhim aquaticum was applied to natural whole sediments. For performing the test, whorls ofMyriophyllum aquaticum were directly planted in the native sediment and incubated in the light at 24°C (cf. section results and discussion). The end points of the test were the number of the shoots and the fresh weight of the whole plants. The duckweed growth inhibition test withLemna minor according to ISO/DIS 20079 was performed in pore waters from sediment samples. The results of the sediment contact test withMyriophyllum aquaticum were compared with each other and with those of the aquatic duckweed test.

Results and Discussion

A test protocol for the new plant-based sediment contact test using the aquatic plantMyriophyllum aquaticum as an indicator was developed. The best control sediment proved to be the OECD sediment (OECD 207). A test period of 10 days appeared to be sufficient for the test. The increase of biomass and the derived growth rate were found to be the most suitable evaluation parameters. The growth behaviour ofMyriophyllum aquaticum differed depending on the origin of sediments. Therefore, plant-affecting contamination, that is bound in sediments, was indicated.


The novel sediment contact test withMyriophyllum aquaticum can indicate phytotoxic effects in sediments. Therefore, it allows a better assessment of the overall-toxicity in whole sediments.

Recommendations and Outlook

The sediment contact test withMyriophyllum aquaticum is a valuable tool for the evaluation of the ecotoxicological risk potential of waters and sediments. It should become a complement to a standardised test battery generally used for the assessment of sediment toxicity.


Bioassay Lemna minor macrophytes Myriophyllum aquaticum phytotoxicity sediment assessment sediment contact test sediments toxicity water quality 


  1. Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002): A guidance for the assessment and evaluation of sediment quality: A German approach based on ecotoxicological and chemical measurements. JSS —J Soil & Sediments 2, 37–42CrossRefGoogle Scholar
  2. Claus E, Tippmann P, Heininger P (2002): Anwendung differenzierter Untersuchungsmethoden zur Sedimentbewertung. UWSF — Z Umweltchem Ökotox 14 (1)3–7Google Scholar
  3. DIN 38412 L16 (1995): Determination of the chlorophyll-a content of surface water. German Institut of Normalisation, BerlinGoogle Scholar
  4. DIN 38412 L30 (1989): German standard methods for the examination of water, waste water and sludge — Bio-assays (group L) — Determination of the non-acute-poisonous effect of waste water toDaphnia magna Google Scholar
  5. DIN 38412 L33 (1991): German standard methods for the examination of water, waste water and sludge — Bio-assays (group L) — Determination of the non-poisonous effect of waste water to green algae (Scenedesmus) chlorophyll fluorescence test) by dilution limitsGoogle Scholar
  6. DIN 38412 L48 (2000): German standard methods for the examination of water, waste water and sludge — Bio-assays (group L) — Part 48: Toxicity test withArthrobacter glohiformis for contaminated soilidsGoogle Scholar
  7. Egeler P, Meller M, Roöbke J, Spoerlein P, Streit B, Nagel R (2001):Tubifex tubifex as a link in food chain transfer to hexachlorobenzene from contaminated sediment to fish. Hydrobiologia 463, 171–184CrossRefGoogle Scholar
  8. EN ISO 11348–3 (1998): Water quality — Determination of the inhibitory effect of water samples on the light emission ofVibrio fischeri (Luminescent bacteria test) — Part 3: Method using freeze dried bacteriaGoogle Scholar
  9. EU-WRRL (2000): European Union Water Framework Directive 2000/60/EG of the European Parliament, Journal of the European CommunityGoogle Scholar
  10. Fairchild JF, Ruessler DS, Carlson AR (1998): Comparative sensitivity of five species of macrophytes and six species of algea to atrazin, metribuzin, alachor, and metolachlor. Environ Toxicol Chem 17, 1830–1834CrossRefGoogle Scholar
  11. Feiler U, Krebs F (1999): DeEntwicklung und Anwendung pflanzlicher Biotestverfahren für ökotoxikologische Sedimentuntersuchun gen. In: Oehlmann J, Markert B (Eds) Ökotoxikologie — Ökosystemare Ansätze und Methoden, ecomed, Landsberg, 436–443Google Scholar
  12. Feiler U, Krebs (2001): Entwicklung und Anwendung pflanzlicher Biotestverfahren für ökotoxikologische Untersuchungen von Gewassersedimenten. German Federal Institut of Hydrology (BfG) Bericht-1336Google Scholar
  13. Heininger P, Pelzer J, Claus, E, Pfitzner, S (2003): Results of longterm sediment quality studies on the river Elbe. Acta Hydrochim Hydrobiol 31 (4-5) 356–367CrossRefGoogle Scholar
  14. OECD 207 (1984): OECD Guideline for testing of chemicals — Earthworm acute toxicity testGoogle Scholar
  15. Hock B, Fedtke C, Schmidt RR (1995) Herbizide. Thieme, Stuttgart, New YorkGoogle Scholar
  16. Hollert H, Keiter S, König N, Rudolf M, Braunbeck T (2003): A new sediment contact assay to assess particle-bound pollutants using Zebrafish (Danio rerio) embryos. JSS — J Soils & Sediments 3, 197–207CrossRefGoogle Scholar
  17. Höss (2002): Bestimmung der Wirkung von Sediment— und Bodenproben auf Wachstum, Eiproduktion, Fertilität und Reproduktion vonCaenorhabditis elegans (Nematoda). DIN — RichtlinienentwurfGoogle Scholar
  18. ISO/DIS 20079 (2003): Water quality — Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor) — Duckweed growth inhibition test (ISO TC 147/SC 5)Google Scholar
  19. Jungnickel F (1986): Turion Formation and behaviour inSpirodela polyrhiza at two levels of phosphate supply. Biologica plantarum 28 (3) 168–173CrossRefGoogle Scholar
  20. Lachmund C, Köcher B, Manz W, Heininger P (2003): Chemical and microbiological in situ characterisation of benthic communities in sediments with different contamination levels. JSS — J Soils & Sediments 3 (3) 188–196CrossRefGoogle Scholar
  21. Müller A, Heininger P, Wessels M, Pelzer J, Grünwald K, Pfitzner S, Berger M (2003): Contaminant levels and ecotoxicological effects in sediments of the river Oder. Acta hydrochim hydrobiol 30 (5-6) 244–255Google Scholar
  22. Praszczyk B, Altenburger R, Oehlmann J, Markert B, Schüürmann G (1999): Brauchen wir einen Biotest mit höheren Pflanzen in der aquatischen Toxikologie? In Oehlmann J, Markert B (Eds.) Okotoxikologie — Ökosystemare Ansätze und Methoden. ecomed, Landsberg, 151–163Google Scholar
  23. Riedhammer C, Schwarz-Schulz B, Ahlers J (1999): Bewertung der Wirkung chemischer Stoffe auf die benthische Lebensgemeinschaft. Jahrestagung der GdCh-Fachgruppe ‘Umweltchemie und Ökotoxikologie’, JenaGoogle Scholar
  24. Traunspurger W, Haitzer M, Höss S, Beier S, Ahlf W, Steinberg C (1997): Ecotoxicological assessment of aquatic sediments withCaenorhabditis elegans (nematoda) — A method for testing in liquid medium and whole sediment samples. Environ Toxicol Chem 16, 245–250CrossRefGoogle Scholar
  25. Wang W, Freemark KE (1995): The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf 30, 289–301CrossRefGoogle Scholar
  26. Weber J, Pfitzner S, Plantikow A, Heininger P, Manz W, Kreutzmann J (2004): A particle contact bioassay with the yeastSaccharomyces cerevisiae for assessment of contaminated sediments. In preparation for JSS — J Soils & SedimentsGoogle Scholar

Copyright information

© Ecomed Publishers 2004

Authors and Affiliations

  1. 1.German Federal Institute of Hydrology (BfG)Koblenz

Personalised recommendations