Skip to main content
Log in

Comparative genotoxicity testing of rhine river sediment extracts using the comet assay with permanent fish cell lines (rtg-2 and rtl-w1) and the ames test*

  • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Goals, Scope and Background

Improved quality of surface waters and sediments requires advanced strategies for ecotoxicological assessment. Whilst at least in Germany assessment strategies on the basis of chemical analysis and acute toxicity data dominated the last decades, the development of more specific biological endpoints and biomarkers in ecotoxicology is required in order to arrive at a good ecological potential and good chemical status of surface waters in the European river basins until the year 2015, as required by the European Water Framework Directive. Since sediments have for long been known to function both as a sink and as a source of pollutants in aquatic systems, and since part of the particle-associated substances have frequently been demonstrated to cause mutagenic and carcinogenic effects in aquatic organisms, particularly in fish, there is, among other requirements, an urgent need to develop, standardize and implement integrated vertebrate-based test systems addressing genotoxicity into recent sediment investigation strategies. Thus, the present study was designed to compare the suitability of two commonly used test systems, the comet assay and the Ames test, for the evaluation of the ecotoxicological burden of surface and core sediment samples from the river Rhine.

Methods (or Main Features)

In order to determine the importance of inherent enzymatic activities, two permanent fish cell lines with different biotransformation capacities, RTL-W1 and RTG-2, were compared with respect to their capability of detecting genotoxic effects in 18 surface and core sediment samples from 9 locations along the River Rhine in the comet assay with and without exogenous bioactivation. For further comparison, as a prokaryotic mutagenicity assay, theSalmonella plate incorporation assay (Ames test) with the test strains TA98 and TA 100 with and without exogenous metabolic activation was used.

Results and Discussion

Whereas all sediment extracts induced genotoxic effects in the comet assay with RTL-W1 cells, only 12 out of 18 sediment extracts revealed significant genotoxicity in the tests with the less biotransformation-competent RTG-2 cells. Exogenous bioactivation by addition of ß-naphthoflavone /phenobarbital-induced S9 from rat liver resulted in both reduction or increase of genotoxicity in samples from different sites, however, without consistent reaction patterns. In general, the responses of RTL-W1 cells indicated higher biotransformation capacity than in RTG-2 cells without S9 complementation. In Ames tests using TA98 with S9, 16 out of 18 extracts induced significant mutagenicity with induction factors up to 4. Compared to TA98, the strain TA100 proved less sensitive, with maximum induction factors of 1.3, indicating the potential presence of substances inducing frarneshift mutations, which can only be detected in the strain TA98. Chemical analyses revealed particularly high levels of hexachlorbenzene (up to 860 µg/kg) and priority PAHs (up to 4.8 mg/kg); so far, however, no correlation could be found between compounds analyzed and the corresponding biotests.

Conclusions

Results document that both comet assay and Ames test are capable of detecting xenobiotic interaction with DNA in consequence of exposure to complex environmental samples. Whereas the alkaline version of the comet assay detects a broad range of interactions with the DNA, however without information about their eventual importance, the Ames test only reveals established mutations, but fails to detect transient (reparable) DNA alterations. However, even transient primary changes in the DNA structure might result in carcinogenic processes and, eventually, in implications at the population level. As a consequence, for hazard assessment purposes, a combination of both assays is required to avoid false negatives in genotoxicity evaluation. Poor correlation between data obtained by chemical analysis and results in bioassays is indicative of our limited understanding of the sources of genotoxicity. In fact, numerous studies combining chemical and biological approaches for hazard assessment of complex environmental mixtures indicate that priority pollutant concentrations are a poor indicator of toxicity.

If compared to the cell line RTG-2, RTL-W1 proved more effective in detecting genotoxicity in surface sediment samples and, thus, indicated the importance of bioactivation of at least part of the compounds in superficial layers of sediments. Results further document that the common assumption may be wrong that, in comparison to deeper strata, surface layers carry a lower toxic burden in consequence of the current decrease in water pollution. This might at least in part be due to remobilization of more heavily polluted sediments from deeper layers during severe flood events followed by re-sedimentation in flood plains or upstream weirs, where they might cover less polluted younger sediment layers.

Recommendations and Perspectives

For a comprehensive assessment of genotoxicity in surface and core sediments, a combination of eukaryotic (comet assay) and prokaryotic assays (Ames test) with and without exogenous bioactivation is recommended. Since studies with organic sediments extracts simulate a worst-case scenario and fail to take into account bioavailability, there is broad consensus that whole-sediment exposure protocols represent the most realistic scenarios. Whereas more realistic solid phase exposure has frequently been applied in both microbial and invertebrate acute toxicity testing, there is an urgent need to develop corresponding whole sediment fish-based genotoxicity tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlf W, Braunbeck T, Heise S, Hollert H (2002a): Sediment and Soil Quality Criteria. In: Burton F, McKelvie I, Förstner U, Guenther A (Editors), Environmental Monitoring Handbook. McGraw-Hill, New York, pp. 17.1–18

    Google Scholar 

  • Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002b): A Guidance for the Assessment and Evaluation of Sediment Quality: A German Approach Based on Ecotoxicological and Chemical Measurements.J Soils & Sediments 2, 37–42

    Article  CAS  Google Scholar 

  • Balch GC, Metcalfe CD, Huestis SY (1995): Identification of Potential Fish Carcinogens in Sediment from Hamilton Harbour, Ontario, Canada. Environ Toxicol Chem 14, 79–91

    Article  CAS  Google Scholar 

  • BfG 2001: Jahresbericht 2000, Koblenz

  • Borenfreund E, Puerner JA (1984): A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Meth, 7–9

  • Brack W (2003): Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377, 397–407

    Article  CAS  Google Scholar 

  • Braunbeck T, Deventer K, Froschauer A, Glos M, Krolla-Sidenstein P, Miltenburger HG, Nehls S, Schnurstein A, Segner H, Obst U, Weßler H (2004): The comet assay as a tool to detect the genotoxic potential of surface water samples:in vivo andin vitro assays using green algae, protozoa, molluscs, fish, as well as primary and permanent cell cultures from fish and mammals. Water Research submitted

  • Canonero R, Campart GB, Mattioli F, Robbiano L, Martelli A (1997): Testing ofp-dichlorobenzene and hexachlorobenzene for their ability to induce DNA damage and micronucleus formation in primary cultures of rat and human hepatocytes. Mutagenesis 12, 35–39

    Article  CAS  Google Scholar 

  • Cotelle S, Ferard JF (1999): Comet assay in genetic ecotoxicology: a review. Environ Mol Mutagen 34, 246–255

    Article  CAS  Google Scholar 

  • DIN 38415-15: German standard methods for the examination of water, waste water and sludge — Sub-animal testing (group T) — Part 4: Determination of the genotoxic potential using the Salmonella microsome test (Ames Test) (T4)

  • DK-Rhein (2001): Deutsche Kommision zur Rheinhaltung des Rheins — Rheingütebericht 2000. 105

    Google Scholar 

  • Foerstner U (2002): Sediments and the European Water Framework Directive. J Soils & Sediments 2, 54

    Article  Google Scholar 

  • Grummt T (2000a): Sachstand — Empfehlung zum Aufbau einer Testbatterie. In: BMBF (Editor), Projektträger Wassertechnologie und Entsorgung (PtWT+E), Forschungsvorhaben ’Erprobung, Vergleich, Weiterentwicklung und Beurteilung von Geotoxizitätstests für Oberflächengewässer, Abschlussbericht, Dresden, pp. 214-217 (in German)

  • Grummt T (2000b): Genotoxic substances in the environment. Schriftenr Ver Wasser Boden Lufthyg 106, 63–69

    CAS  Google Scholar 

  • Hollert H, Dürr M, Erdinger L, Braunbeck T. (2000): Cytotoxicity of settling particulate matter and sediments of the neckar river (Germany) during a winter flood. Environ Toxicol Chem 19, 528–534

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Olsman H, Halldin K, Bavel Bv, Brack W, Tysklind M, Engwall M, Braunbeck T (2002a): Biological and chemical determination of dioxin-like compounds in sediments by means of sediment riad approach in the catchment area of the Neckar river. Ecotoxicology 11, 323–336

    Article  CAS  Google Scholar 

  • Hollert H, Heise S, Pudenz S, Bruggemann R, Ahlf W, Braunbeck T (2002b): Application of a sediment quality triad and different statistical approaches (hasse diagrams and fuzzy logic) for the comparative evaluation of small streams. Ecotoxicology 11, 311–321

    Article  CAS  Google Scholar 

  • Hollert H, Haag I, Dürr M, Wetterauer B, Holtey-Weber R, Kern U, Westrich B, Färber H, Erdinger L, Braunbeck T (2003a): Untersuchungen zum äkotoxikologischen Schädigungspotenzial und Erosionsrisiko von kontaminierten Sedimenten in staugeregelten Flüssen. UWSF — Z Umweltchem Ökotox 15, 5–12 (in German)

    CAS  Google Scholar 

  • Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003b): A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils & Sediments 3, 197–207

    Article  Google Scholar 

  • Kammann U, Riggers JC, Theobald N, Steinhart H (2000): Genotoxic potential of marine sediments from the North Sea. Mutat Res Genet Toxicol 467, 161 - 168

    Article  CAS  Google Scholar 

  • Klee N, Gustavsson L, Kosmehl T, Engwall M, Erdinger L, Braunbeck T, Hollert H (2004): Toxicity and genotoxicity in an industrial sewage sludge containing nitro- and amino-aromatic compounds during treatment in bioreactors under different oxygen regimes. ESPR — Environ Sci & Pollut Res <DOI: http://dx.doi.org/10.1065/espr2004.03.189>

  • Koethe H (2003): Existing sediment management guidelines: An overview. What will happen with the sediment/dredged material? J Soils & Sediments 3, 139–143

    Article  Google Scholar 

  • Krebs F (2000a): Ökotoxikologische Untersuchung und Bewertung von Baggergut mit Hilfe der pT-Wert-Methode. In: BfG (Editor), Jahresbericht 1999, Koblenz, pp. 51-56 (in German)

  • Krebs F (2000b): Verbundprojekt ‘Sedimentkataster Neckar’ — Verglei-chende Untersuchungen zur Ermittlung des ökotoxikologischen Gefährdungspotenzials von Gewässersedimenten im Rahmen der Erstellung eines Sedimentkatasters für den Neckar. Bundesanstalt für Gewässerkunde — BfG-Veranstaltungen 5/2000 ‘Wirkungsbezogene Sedimentuntersuchungen zur Ableitung von Qualitätsmerkmalen und Handlungsempfehlungen’, 1-8 (in German)

  • Krebs F (2004): Verbundprojekt ‘Sedimentkataster Oberrhein’. BfG- Mitteilungen, to be submitted

  • Lachmund C, Köcher B, Manz W, Heininger P (2003): Chemical and microbiological in situ characterization of benthic communities in sediments with different contamination levels. JSS — J Soils & Sediments 3, 188 -196

    Article  CAS  Google Scholar 

  • Lee LE, Clemons JH, Bechtel DG, Caldwell SJ, Han KB, Pasitschniak- Arts M, Mosser DD, Bols NC (1993): Development and characterization of a rainbow trout liver cell line expressing cytochrome P450- dependent monooxygenase activity. Cell Biol Toxicol 9, 279–294

    Article  CAS  Google Scholar 

  • Lee RF, Steinert S (2003): Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mut Res 544, 43–64

    CAS  Google Scholar 

  • Marvin CH, McCarry BE, Villella J, Allan LM, Bryant DW (2000): Chemical and biological profiles of sediments as indicators of sources of contamination in Hamilton Harbour. Part II: Bioassay-directed fractionation using the Ames Salmonella/microsome assay. Chemosphere 41, 989–999

    Article  CAS  Google Scholar 

  • Metcalfe CD, Balch GC, Cairns VW, Fitzsimons JD, Dunn BP (1990): Carcinogenic and genotoxic activity of extracts from contaminated sediments in western Lake Ontario. Sci Total Environ 94, 125–141

    Article  CAS  Google Scholar 

  • Mortelmans K, Zeiger E (2000): The Ames Salmonella/microsome mutagenicity assay. Mut Res — Fund Mol Mech 455, 29–60

    Article  CAS  Google Scholar 

  • Nehls S, Segner H (2001): Detection of DNA damage in two cell lines from rainbow trout, RTG-2 and RTL-W1, using the comet assay. Environ Toxicol Chem 16, 321–329

    Article  CAS  Google Scholar 

  • Power EA, Chapman PM (1992): Assessing sediment quality. In: Burton GA (Editor), Sediment toxicity assessment. Lewis-Publishers, Boca Raton, pp. 1–18

    Google Scholar 

  • Reifferscheid G, Grummt T (2000): Genotoxicity in German surface waters — Results of a collaborative study. Water, Air and Soil Pollution 123, 67–79

    Article  CAS  Google Scholar 

  • Schnurstein A, Braunbeck T (2001): Tail moment versus tail length-application of an in vitro version of the comet assay in biomonitoring for genotoxicity in native surface waters using primary hepatocytes and gill cells from zebrafish (Danio rerio). Ecotox Environ Safety 49, 187–196

    Article  CAS  Google Scholar 

  • Segner H, Behrens A, Joyceb EM, Schirmer K, Bols NC (2000): Transient induction of 7-ethoxyresorufin-O-deethylase (EROD) activity by medium change in the rainbow trout liver cell line, RTL-W1. Mar Environ Res 50, 489–493

    Article  CAS  Google Scholar 

  • Siekel P, Chalupa I, Beno J, Blasko M, Novotny J, Burian J (1991): A genotoxicological study of hexachlorobenzene and pentachloroanisole. Teratog Carcinog Mutagen 11, 55–60

    Article  CAS  Google Scholar 

  • Samoiloff MR, Bell J, Birkholz DA, Webster GRB, Arnott EG, Pulak R, Madrid A (1983): Combined bioassay-chemical fraction Scheme for the determination and ranking of toxic chemicals in tediments. Environ Sci Technol 17, 329–334

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988): A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175, 184–191

    Article  CAS  Google Scholar 

  • Stahl RGJr., (1991): The genetic toxicology of organic compounds in natural waters and wastewaters. Ecotox Environ Safety 22, 94–125

    Article  CAS  Google Scholar 

  • Stegeman JJ, Kloepper-Sams PJ (1987): Cytochrome P-450 isoenzymes and monooxygenase activity in aquatic animals. Environ Health Persp 71, 87–95

    Article  CAS  Google Scholar 

  • Tittizer T, Krebs F (Editors), 1996: Ökosystemforschung — Der Rhein und seine Auen. Eine Bilanz. Springer, Heidelberg, 468 pp (in German)

  • Ulrich M, Schulze T, Leist E, Glaß B, Maier M, Maier D, Braunbeck T, Hollert H (2002): Ökotoxikologische Untersuchung von Sedimenten und Schwebstoffen: Abschätzung des Gefährdungspotenzials für Trink-wasser und Korrelation verschiedener Expositionspfade (Acetonischer Extrakt, Natives Sediment) im Bakterienkontakttest und Fischeitest. UWSF — Z Umweltchem Ökotox 14, 132–137 (in German)

    CAS  Google Scholar 

  • Wolf K, Quimby MC (1962): Established eurythermic line of fish cellsin vitro. Science 135, 1065–1066

    Article  CAS  Google Scholar 

  • Ziaee AA, Rastgar-Jazii F (1996): Drinking water and esophageal cancer in nothern Iran. Irn J Med Sci 21, 28

    Google Scholar 

  • Zietz B, Pfeiffer H (2000): Mutagenes Potenziai von Wasser aus Flüssen, Seen und Meeren. gwf — Wasser Abwasser 141, 164–171 (in German)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henner Hollert.

Additional information

This paper has been developed from a presentation given at the 8th SETAC-GLB Conference New Blood in Ecotoxicology’ held at Heidelberg, September 21 to 23, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmehl, T., Krebs, F., Manz, W. et al. Comparative genotoxicity testing of rhine river sediment extracts using the comet assay with permanent fish cell lines (rtg-2 and rtl-w1) and the ames test*. J Soils & Sediments 4, 84–94 (2004). https://doi.org/10.1007/BF02991050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02991050

Keywords

Navigation