Skip to main content
Log in

Vortical flows over a delta wing at high angles of attack

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

The vortex flow characteristics of a sharp-edged delta wing at high angles of attack were studied using a computational technique. Three dimensional, compressible Reynolds-averaged Navier-Stokes equations were solved to understand the effects of the angle of yaw, angle of attack, and free stream velocity on the development and interaction of vortices and the relationship between suction pressure distributions and vortex flow characteristics. The present computations gave qualitatively reasonable predictions of vortical flows over a delta wing, compared with past wind tunnel measurements. With an increase in the angle of yaw, the symmetry of the pair of leading edge vortices was broken and the vortex strength was decreased on both windward and leeward sides. An increase in the free stream velocity resulted in stronger leading edge vortices with an outboard movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cp :

Static pressure coefficient

c :

Chord length

E:

Total energy per unit mass

H:

Total enthalpy per unit mass

k:

Turbulent kinetic energy

Prt :

Turbulent Prandtl number

p:

Pressure in pascal

s:

Local semi-span

t:

Time

T:

Temperature in Kelvin

Ui :

Velocity in ith direction

u' i :

Velocity fluctuation in ith direction

V:

Free stream velocity

Xi :

Coordinates in ith direction

ε:

Turbulent dissipation rate

α:

Angle of attack

β:

Angle of yaw

ĸ:

Thermal conductivity

μ:

Viscosity

μt :

Turbulent viscosity

ρ:

Density

τj :

Deviatoric stress tensor

References

  • Barth, T.J. and Jespersen, D., 1989, “ The Design and Application of Upwind Schemes on Unstructured Meshes, ”AIAA Paper 89-0366.

  • Ekaterinaris, J. A. and Schiff, L. 1990, “ Numerical Simulation of the Effects of Variation of Angle of Attack and Sweep Angle on Vortex Breakdown over Delta Wings, ”AIAA Paper 90-3000.

  • Ekaterinaris, J. A. and Schiff, L. 1993, “ Numerical Predictions of Vortical Flows over Slender Delta Wings, ”J. Aircraft, Vol. 30, pp. 935–942.

    Article  Google Scholar 

  • Erickson, G. E., Schreiner, J. A. and Roges, L. W., 1989, “ On the Structure, Interaction, and Breakdown Characteristics of Slender Wing Vortices at Subsonic, Transonic, and Supersonic Speeds, ”AIAA Paper 89-3345.

  • Fujii, K. and Schiff, L. 1989, “ Numerical Simulation of Vortical Flows over Strake-Delta Wing, ”AIAA J., Vol.27, pp. 1153–1162.

    Article  Google Scholar 

  • Görtz, S., Rizzi, A. and Munukka, K., 1999, “ Computational Study of Vortex Breakdown over Swept Delta Wings, ”AIAA Paper 99-3118.

  • Grismer, D. S., 1995, “ Double-Delta-Wing Aerodynamics for Pitching Motions with and without Sideslip, ”J. Aircraft, Vol. 32, pp. 1303–1311.

    Article  Google Scholar 

  • Hinze, J. 1975,Turbulence, McGraw-Hill Publishing Co., New York, p. 23.

    Google Scholar 

  • Hummel, D., 1978, “ On the Vortex Formation Over a Slender Wing at Large Angles of Incidence, ”AGARD-CPP-247.

  • Jameson, A., Schmidt, W. and Turkel, E., 1981, “ Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, ”AIAA Paper 81-1259.

  • Ken, C, 1993, “ Numerical Study of Blowing on Delta Wings at High Alpha, ”J. Aircraft, Vol. 30, pp. 833–839.

    Article  Google Scholar 

  • Kern, S. 1993, “ Vortex Flow Control Using Fillets on a Double-Delta Wing, ”J. Aircraft, Vol.30, pp. 818–825.

    Article  Google Scholar 

  • Kim, T. H., Kweon, Y. H., Kim, H. D. and Sohn M. H., 2003, “ A Study of the Vortical Flow over a Delta Wing with a Leading Edge Extension, ”6th Int. Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, Shanghai, China, pp. 408–413.

  • Launder, B. E. and Spalding, D. 1972,Lectures in Mathematical Models of Turbulence, Academic Press, London, England.

    Google Scholar 

  • Lee, K. Y. and Sohn, M. H., 2003, “ The Vortical Flow Field of Delta Wing with Leading Edge Extension, ”KSME Intl. J., Vol. 17, pp. 914–924.

    Article  Google Scholar 

  • Lowson, M. V. and Riley, A. J., 1995, “ Vortex Breakdown Control by Delta Wing Geometry, ”J. Aircraft, Vol. 32, pp. 832–838.

    Article  Google Scholar 

  • Robinson, B. A., Barnett, R. M. and Agrawal, S., 1994, “ Simple Numerical Criterion for Vortex Breakdown, ”AIAA J., Vol.32, pp. 116–122.

    Article  Google Scholar 

  • Sarkar, S. and Balakrishnan, L., 1990, “ Application of a Reynolds-Stress Turbulence Model to the Compressible Shear Layer, ”ICASE Report 90-18, NASA CR-182002.

  • Sohn, M. H. and Lee, K. Y., 2002, “ Experimental Investigation of Vortex Flow of a Yawed Delta Wing Having Leading Edge Extension, ”AIAA paper 2002-3267.

  • Verhaagen, N. G. and Naarding, S. H. J., 1989, “Experimental and Numerical Investigation of the Vortex Flow over a Sidesliping Delta Wing, ”J. Aircraft, Vol. 26, pp. 971–978.

    Article  Google Scholar 

  • Wentz, W. H. Jr. and Kohlman, D. L., 1971, “ Vortex Breakdown on Slender Sharp Edged Wings, ”J. Aircraft, Vol. 8, pp. 156–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heuy-Dong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YK., Kim, HD. Vortical flows over a delta wing at high angles of attack. KSME International Journal 18, 1042–1051 (2004). https://doi.org/10.1007/BF02990877

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990877

Key Words

Navigation