Skip to main content
Log in

Estimation and comparison of leaf area index of agricultural crops using irs liss-III and EO-1 hyperion images

  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Motivated by the increasingly availability and importance of hyperspectral remote sensing data, this study aims to determine whether current generation narrowband hyperspectral remote sensing data could be used to estimate vegetation Leaf Area Index (LAI) accurately than the traditional broadband multispectral data. A comparative study has been carried out to evaluate the performance of the narrowband Normalized Difference Vegetation Index (NDV1) derived from Hyperion hyperspectral sensor with that of derived from IRS LISS-III for the estimation of LAI of some major agricultural crops (e.g. cotton, sugarcane and rice) in part of Guntur district, India. It has been found that the narrowband NDVI derived from Hyperion has shown better results over its counterpart derived from broadband LISS-III. Linear regression models have been used which with selected subsets of individual Hyperion bands performed better to predict LAI than those based on the broadband datasets, although the potential to overfit models using the large number of available Hyperion bands is a concern for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baret, R, Guyot, G and Major, D.J. (1989). TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation, Proc. 12th Canadian Symposium on Remote Sensing, Vancouver, BC, Canada, 10–14 July, 1990, pp. 1355–1358.

  • Blackburn, G.A. (1998). Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches.Remote Sens. Environ.,66: 273–285.

    Article  Google Scholar 

  • Carter, GA. (1998). Reflectance bands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies.Remote Sens. Environ.,63:61–72.

    Article  Google Scholar 

  • Chen, J. and Cihlar, J. (1996). Retrieving leaf area index of boreal conifer forests using Landsat TM images.Remote Sens. Environ.,55: 153–162.

    Article  Google Scholar 

  • Chen, Z., Elvidge, C.D. and Groeneveld, D.P. (1998). Monitoring seasonal dynamics of arid land vegetation using AVIRIS data.Remote Sens. Environ.,65: 255- 266.

    Article  Google Scholar 

  • Collins, W. (1978). Remote sensing of crop type and maturity.Photogramm. Eng. Remote Sens.,44: 43- 55.

    Google Scholar 

  • Curran, P.J., Dungan, J.L. and Gholz, H.L. (1990). Exploring the relationship between reflectance red edge and chlorophyll content in slash pine.Tree Phys.,7: 33–48.

    Google Scholar 

  • Curran, P.J., Dungan, J. and Gholz, H.L. (1992). Seasonal LAI measurements in slash pine using Landsat TM.Remote Sens. Environ.,39: 3–13.

    Article  Google Scholar 

  • Elvidge, C.D. and Lyon, R.J.P. (1985). Influence of rock- soil spectral variation on the assessment of green biomass.Remote Sens. Environ.,17: 265–269.

    Article  Google Scholar 

  • Elvidge, CD., Chen, Z.K. and Groeneveld, D.P. (1993). Detection of trace quantities of green vegetation using 1990 AVIRIS data.Remote Sens. Environ.,44: 271–279.

    Article  Google Scholar 

  • Farrand, W.H., Singer, R.B. and Merenyi, E. (1994). Retrieval of apparent surface reflectance from AVIRIS data: a comparison of empirical line, radiative transfer, and spectral mixture methods.Remote Sens. Environ.,47: 311–321.

    Article  Google Scholar 

  • Gong, P., Pu, R. and Miller, J.R. (1995). Coniferous forest leaf area index estimation along the Oregon transact using compact airborne spectrographic imager data.Photogramm. Eng. Remote Sens.,61: 1107–1117.

    Google Scholar 

  • Huete, A.R. (1988). A soil-adjusted vegetation index (SAVl).Remote Sens. Environ.,25: 295–309.

    Article  Google Scholar 

  • Huete, A.R., Jackson, R.D. and Post, D.F. (1985). Spectral response of a plant canopy with different soil backgrounds.Remote Sens. Environ.,17: 37–53.

    Article  Google Scholar 

  • Kuusk, A. (1998). Monitoring of vegetation parameters on large areas by the inversion of a canopy reflectance model.Int. J. Remote Sensing,19: 2893- 2905.

    Article  Google Scholar 

  • Mardia, D., Kent, J. and Bibby, J. (1979). Multivariate Analysis. London, U.K.: Academic, pp. 79–82.

    Google Scholar 

  • Martin M.E. and Aber, J.D. (1997). High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes.Ecol. Appl,7: 431–443.

    Article  Google Scholar 

  • Moran, M.S., Inoue, Y. and Barnes, E.M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management.Remote Sens. Environ.,61: 319–346.

    Article  Google Scholar 

  • Myneni, R.B., Ramakrishna, R.N. and Running, S.W. (1997). Estimation of Global Leaf Area Index and Absorbed Par Using Radiative Transfer Models,IEEE Trans.Geosci. Remote Sensing,35: 380–1393.

    Article  Google Scholar 

  • Pandya, M.R., Chaudhari, K.N., Singh, R.P., Segal, V.K., Bairagi, GD., Sharma, R. and Dadhwal, V.K. (2003). Leaf area index retrieval using IRS LISS-III sensor data and validation of MODIS LAI product over Madhya Pradesh.Current Science,85(12): 1777–1782.

    Google Scholar 

  • Pearlman, J., Carman, S., Segal, C, Jarecke, P. and Barry, P. (2001). Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission. Proc. IGARSS 2001 held at Sydney, Australia, Oct. 12– 15, pp. 89–102.

  • Peterson, D.L., Spanner, M.A., Running, S.W. and Teuber, K. (1987). Relationship of thematic mapper data to leaf area index of temperate coniferous forests.Remote Sens. Environ.,22: 323–341.

    Article  Google Scholar 

  • Roberts, D.S., Smith, M.O. and Adams, J.B. (1993). Green vegetation, nonphotosynthetic vegetation and soils in AVIRIS data.Remote Sens. Environ.,44: 255–269.

    Article  Google Scholar 

  • Running, S.W., Nemani, R.R., Peterson, D.L., Band, L.E., Potts, D.F., Pierce, L.L. and Spanner, M.A. (1989). Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation.Ecology,70(4): 1090–1101.

    Article  Google Scholar 

  • Running, S.W., CO. Justice, V. Salmonson, D. Hall, J. Barker, Y.J. Kaufmann, AH. Strahler, Z.M., Wan P, and Carneggie, D. (1994). Terrestrial remote sensing science and algorithms planned for EOS/ MODIS.Int. J. Remote Sensing,15: 3587–3620.

    Article  Google Scholar 

  • Smith, J.A. (1993). LAI Inversion using a back- propagation neural network trained with a multiple scattering model.IEEE Trans. Geosc. Remote Sensing,31(5): 1102–1106.

    Article  Google Scholar 

  • Strachan, I.B., Pattey, E. and Biosvert, J.B. (2002). Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance.Remote Sens. Environ.,80(2): 213–224.

    Article  Google Scholar 

  • Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation.Remote Sens. Environ.,8: 127–150.

    Article  Google Scholar 

  • Turner, D., Cohen, W., Kennedy, R., Fassnacht, K. and Briggs, J. (1999). Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites.Remote Sens. Environ.,70: 2–68.

    Article  Google Scholar 

  • Ungar, S.G (2001). Overview of EO-I, the first 120 days, Proc. IGARSS 2001, Sydney, Australia, Oct. 12–15, 2001, pp. 45–62.

  • Wiegand, C.L., Mass, S.J., Aase, J.K., Hatfield, J.L., Pinter, P.J. and Lapitan, R.L. (1992). Multisite analysis of spectral-biophysical data for wheat.Remote Sens. Environ.,42: 1–21.

    Article  Google Scholar 

  • Yoder, B.J. (1992). Photosynthesis of conifer: influential factors and potentials for remote sensing. Ph.D. Thesis, Oregon State University.

  • Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F. and Huete, A. (2003). Monitoring vegetation phenology using MODIS.Remote Sens. Environ.,84: 471–475.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rama Rao.

About this article

Cite this article

Rao, N.R., Garg, P.K. & Ghosh, S.K. Estimation and comparison of leaf area index of agricultural crops using irs liss-III and EO-1 hyperion images. J Indian Soc Remote Sens 34, 69–78 (2006). https://doi.org/10.1007/BF02990748

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990748

Keywords

Navigation