Skip to main content
Log in

Splitting cell adhesiveness into independent measurable parameters by comparing ten human melanoma cell lines

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

The concept of cell adhesiveness was analyzed by looking for correlations between the adhesive behavior and measurable biological properties of different cell populations. Ten established lines of melanoma cells were assayed for passive deformability (by micropipet aspiration), active spreading (by measuring the height/diameter ratio after incubation on different surfaces), density and mobility of concanavalin A binding sites (by quantitative analysis of fluorescence microscopic images), spontaneous and concanavalin A-mediated agglutination (by measuring the number of cell conjugates resisting calibrated shearing forces), and binding to glass capillary tubes (with a quantitative assay of binding strength). Forty-four different parameters were thus measured, and each set of determinations was repeated 2 or 3 t at different days on each cell line. Analysis of variance was performed to assess the capacity of each parameter to discriminate between different lines. Correlations between different parameters were studied in order to understand a possible influence of cell intrinsic properties on the behavior of individual cells. The following conclusions were suggested by experimental data

  1. 1.

    Cell spreading ability, resistance to slow deformation within a micropipette and ability to form shear-resistant bonds, are independent properties. It is therefore suggested that different mechanisms rule the cell deformations on time scales of several minutes, tens of seconds, and fractions of a second.

  2. 2.

    Cell spreading ability may effectively influence binding strength only when adhesive stimuli are low, since in this case, cell stiffness is likely to impair the formation of extensive contact areas.

  3. 3.

    Individual cells may display marked heterogeneity within a given population, that emphasizes the danger of using averaged parameters to predict rare events (such as metastasis formation).

  4. 4.

    The most useful parameters to discriminate between different cell lines were, spreading ability and shear-resistant lectin agglutination, and substrate adhesion.

It is concluded that cell adhesion is influenced by several measurable cellular properties that may display independent variations. The importance of a given parameter depends on the conditions of bond formation and rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briles, E. B. and Kornfeld, S. (1978),J. Natl. Cancer Inst. 60, 1217–1221.

    PubMed  CAS  Google Scholar 

  2. Yogeeswaran, G., Stein, B.S., and Sebastian, H. (1978),Cancer Res. 38, 1336–1344.

    PubMed  CAS  Google Scholar 

  3. Raz, A., Bucana, C., McLellan, W., and Fidler, I. J. (1980),Nature 284, 363, 364.

    Article  PubMed  CAS  Google Scholar 

  4. Raz, A. and Geiger, B. (1982),Cancer Res. 42, 5183–5190.

    PubMed  CAS  Google Scholar 

  5. Lotan, R. and Raz, A. (1983),Cancer Res. 43, 2088–2093.

    PubMed  CAS  Google Scholar 

  6. Volk, T., Geiger, B., and Raz, A. (1984),Cancer Res. 44, 811–824.

    PubMed  CAS  Google Scholar 

  7. Ochalek, T., Nordt, F. J., Tullberg, K., and Burger, M. M. (1988),Cancer Res. 48, 5124–5128.

    PubMed  CAS  Google Scholar 

  8. Reich, S., Rosin, H., Levy, M., Markash, R., and Raz, A. (1984),Exp. Cell Res. 153, 566–560.

    Article  Google Scholar 

  9. Fogel, M., Altevogt, P., and Schirrmacher, V. (1983),J. Exp. Med. 157, 371–376.

    Article  PubMed  CAS  Google Scholar 

  10. Hochman, J., Levy, E., Mador, N., Cottesman, M. M., Shearer, G. M., and Okon, E. (1984),J. Cell Biol. 99, 1282–1288.

    Article  PubMed  CAS  Google Scholar 

  11. Capo, C., Benoliel, A. M., Bongrand, P., Mishal, Z., and Berebbi, M. T. (1985),Immunol. Invest. 14, 27–40.

    Article  PubMed  CAS  Google Scholar 

  12. Wright, T. C., Ukena, T. E., Campbell, R., and Karnovsky, M. J. (1977),Proc. Natl. Acad. Sci. (U.S.A.) 74, 258–262.

    Article  CAS  Google Scholar 

  13. Leung-Tack, J., Capo, C., Delapeyriere, O., Benoliel, A. M., Arnaud, D., and Bongrand, P. (1988),Int. J. Cancer 42, 946–951.

    PubMed  CAS  Google Scholar 

  14. Marslow, D. E. (1989),Invasion Metastasis 9, 182–191.

    Google Scholar 

  15. Bongrand, P., ed. (1988),Physical Basis of Cell-Cell Adhesion, CRC Press, Boca Raton.

    Google Scholar 

  16. Aubert, C., Janiaud, P., Rouge, F., Hansson, C., Rorsman, H., and Rosengren, E. (1980),Ann. Clin. Res. 12, 288–294.

    PubMed  CAS  Google Scholar 

  17. Aubert, C., Rouge, F., and Galindo, J. R. (1980),J. Natl. Cancer Inst. 64, 1029–1040.

    PubMed  CAS  Google Scholar 

  18. Aubert, C., Rouge, F., and Galindo, J. R. (1984),J. Natl. Cancer Inst. 72, 3–12.

    PubMed  CAS  Google Scholar 

  19. Bongrand, P. and Golstein, P. (1983),J. Immunol. Methods 58, 209–224.

    Article  PubMed  CAS  Google Scholar 

  20. Capo, C., Garrouste, F., Benoliel, A. M., Bongrand, P., Ryter, A., and Bell, G. I. (1982),J. Cell Sci. 56, 21–48.

    PubMed  CAS  Google Scholar 

  21. Mège, J. L., Capo, C., Benoliel, A. M., and Bongrand, P. (1986),Cell Biophys. 8, 141–156.

    PubMed  Google Scholar 

  22. Mège, J. L., Capo, C., Benoliel, A. M., Foa, C., and Bongrand, P. (1985),J. Immunol. Methods 82, 3–15.

    Article  PubMed  Google Scholar 

  23. André, P., Capo, C. Benoliel, A. M., Buferne, M., and Bongrand, P. (1990),Cell Biophys., in press.

  24. Mège, J. L., Capo, C., Benoliel, A. M., and Bongrand, P. (1987),Biophys. J. 52, 177–186.

    PubMed  Google Scholar 

  25. Snedecor, G. W. and Cochran, W. G. (1980),Statistical Methods, Iowa State University Press, Ames, pp. 215–237.

    Google Scholar 

  26. Weiss, L. and Clement, K. (1969),Exp. Cell. Res. 58, 379–387.

    Article  PubMed  CAS  Google Scholar 

  27. Weiss, L. and Dimitrov, L. (1984),Cell Biophys. 6, 9–22.

    PubMed  CAS  Google Scholar 

  28. Nicolson, G. L. (1971),Nature New Biol. 233, 244–246.

    CAS  Google Scholar 

  29. Fernandez, S. M. and Berlin, R. D. (1976),Nature 264, 411–415.

    Article  PubMed  CAS  Google Scholar 

  30. Schmid-Schonbein, G. W., Sung, K. L., Tozeren, H., Skalak, R., and Chien, S. (1981),Biophys. J. 36, 243–256.

    PubMed  CAS  Google Scholar 

  31. Evans, E. A. and Kukan, B. (1984),Blood 64, 1028–1035.

    PubMed  CAS  Google Scholar 

  32. McClay, D. R., Wessel, G. M., and Marchase, R. B. (1981),Proc. Natl. Acad. Sci. (U.S.A.) 78, 4975–4979.

    Article  CAS  Google Scholar 

  33. Somers, S. D., Mastin, J. P., and Adams, D. O. (1983),J. Immunol. 131, 2086–2093.

    PubMed  CAS  Google Scholar 

  34. Bell, G. I., Dembo, M., and Bongrand, P. (1984),Biophys. J. 45, 1051–1064.

    Article  PubMed  CAS  Google Scholar 

  35. McCloskey, M. A. and Poo, M. M. (1986),J. Cell Biol. 102, 2185–2196.

    Article  PubMed  CAS  Google Scholar 

  36. André, P., Capo, C., Benoliel, A. M., Foa, C., Galindo, J. R., and Bongrand, P. (1990),Biorheology, in press.

  37. Weiss, L. (1961),Exp. Cell. Res. 25, 504–517.

    Article  PubMed  CAS  Google Scholar 

  38. Weiss, L. and Coombs, R. R. A. (1963),Exp. Cell. Res. 30, 331–338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andre, P., Capo, C., Benoliel, AM. et al. Splitting cell adhesiveness into independent measurable parameters by comparing ten human melanoma cell lines. Cell Biophysics 17, 163–180 (1990). https://doi.org/10.1007/BF02990495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990495

Index Entries

Navigation