Skip to main content
Log in

Effect of nickel on oxygen free radical metabolism

Inhibition of superoxide dismutase and enhancement of hydroxydopamine autoxidation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of nickel on superoxide dismutase activity (SOD), as well as on rate of hydroxydopamine oxidation, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel, whose toxicity and carcinogenicity are well established.

Nickel strongly inhibits SOD activity. The degree of inhibition is directly proportion to the nickel concentration (tested range 0.066 to 0.33 μg/mL in the reaction mixture); to the substrate concentration (tested range 0.4×10−4 M to 1.1×10−4 M 6-hydroxydopamine); and to reaction mixture.

Autoxidation of 6-hydroxydopamine was increased by nickel concentrations higher than 15 μg/mL.

The combination of excessive oxygen free radical production and inhibition of their elimination by inhibition of SOD activity may contribute to the nickel toxicity that has been reported in industrial accidents, as well as to the high incidence of cancer occurring in nickel workers. It may also contribute to many complications in uremic patients, in whom increased serum nickel levels were reported to be in a similar range to those inhibiting SOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. W. Baader, Neue Ergebnisse auf dem gebiete der Krebskrankheitan, C. 0 Adam, D. S. Auler,Hirzel Verlag, Leipzig, (1937), pp. 116, 117.

    Google Scholar 

  2. J. A. Cambell,Brit. J. Indust. Med. 15, 217–223, (1958).

    Google Scholar 

  3. Hatem, S. Chanpy,C. R. Acad. Sci. 253, 2791, 2792 (1961).

    Google Scholar 

  4. H. Sky-Peck,Clin. Phys. Bio., Y. pp. 99–111 (1986).

  5. F. W. Sunderman,Annals of Clin. Lab Sci. 19, 11–16 (1989).

    Google Scholar 

  6. F. W. Sunderman,Acta pharmacologica et toxicologica,7, 248–255 (1986).

    Google Scholar 

  7. S. M. Denke and B. L. Fenburg,N. Engl. J. of Med.,303, 77–86, (1980).

    Google Scholar 

  8. A. P. Autor, inThe Biology and Chemistry of Active Oxygen, J. W. Bannister, W. H. Bannister, eds, Elsevier, NY, 1984, pp. 139–145.

    Google Scholar 

  9. J. Fridovich,Ann. Rev. Biochem.,44, 147–159, (1975).

    Article  PubMed  CAS  Google Scholar 

  10. E. D. Getzoff, J. A. Tainer, P. K. Weiner, P. M. Kollman, J. S. Richardson, C. Richardson,Nature,36, 287–289 (1983).

    Article  Google Scholar 

  11. R. E. Heikkila, F. Cabbot,Anal. Biochem.,75, 356–362 (1977).

    Article  Google Scholar 

  12. R. Shainkin-Kestenbaum, A. J. Adler, G. M. Berlyne, and C. Caruso,Clin. Science,77, 463–466 (1989).

    CAS  Google Scholar 

  13. A. Petkua,Cancer Treatment Reviews,13, 17–44 (1986).

    Article  Google Scholar 

  14. H. B. Demopoulos, E. S. Flamm, M. L. Seligman, D. D. Pietronigro, J. Tomasula, and V. Decrescito,Canadian J. of Phys. Pharm. 60, 1415–1424 (1982).

    CAS  Google Scholar 

  15. M. S. Paller, J. R. Holdal, and T. F. Ferris,J. of Clin. Invest. 74, 1156–1164 (1984).

    Article  CAS  Google Scholar 

  16. J. E. Veltishcher,Cont. to Neph. 63, 28–30 (1988).

    Google Scholar 

  17. I. M. Schranfstatter, S. D. Revak, and G. G. Cochrane,J. Clin. Invest. 73, 1175–1184 (1984).

    Article  Google Scholar 

  18. J. C. Fantone, inOxygen Radicals and Tissue Injury, Boray Halliwell, ed., (1988), pp. 63–80, Upjohn, Bethesda.

    Google Scholar 

  19. G. Bertrand and H. Nakamura,Bull. Soc. Sci. Hyg. Aliment. 24, 238–343 (1936).

    Google Scholar 

  20. R. E. Tedeschi and F. W. Sunderman,AMA Arch. Indust. Health,167, 484–488 (1957).

    Google Scholar 

  21. S. Indraprasit, G. V. Alexander, and G. Gonick,J. Chron. Disease,27, 135–161 (1974).

    Article  CAS  Google Scholar 

  22. H. P. Misra, and I. Fridovich,J. Biol. Chem. 247, 3170–3175.

  23. A. J. Matas, R. L. Simmons, C. M. Kjellstrand, T. J. Buselmeier, and J. Najarian,Lancet,1, 883–886 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shainkin-Kestenbaum, R., Caruso, C. & Berlyne, G.M. Effect of nickel on oxygen free radical metabolism. Biol Trace Elem Res 28, 213–221 (1991). https://doi.org/10.1007/BF02990468

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990468

Index Entries

Navigation