Skip to main content
Log in

Myocardial viability assessment using nuclear imaging

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Myocardial assessment continues to be an issue in patients with coronary artery disease and left ventricular dysfunction. Nuclear imaging has long played an important role in this field. In particular, PET imaging using18F-fluorodeoxyglucose is regarded as the metabolic gold standard of tissue viability, which has been supported by a wide clinical experience. Viability assessment using SPECT techniques has gained more wide-spread clinical acceptance than PET, because it is more widely available at lower cost. Moreover, technical advances in SPECT technology such as gated-SPECT further improve the diagnostic accuracy of the test. However, other imaging techniques such as dobutamine echocardiography have recently emerged as competitors to nuclear imaging. It is also important to note that they sometimes may work in a complementary fashion to nuclear imaging, indicating that an appropriate use of these techniques may significantly improve their overall accuracy. In keeping these circumstances in mind, further efforts are necessary to further improve the diagnostic performance of nuclear imaging as a reliable viability test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonow RO. Identification of viable myocardium.Circulation 1996; 94: 2674–2680.

    PubMed  CAS  Google Scholar 

  2. Haas F, Haehnel CJ, Picker W, Nekolla S, Martinoff S, Meisner H, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease.J Am Coll Cardiol 1997; 30: 1693–1700.

    Article  PubMed  CAS  Google Scholar 

  3. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography.N Engl J Med 1986; 314: 884–888.

    PubMed  CAS  Google Scholar 

  4. Tamaki N, Yonekura Y, Yamashita K, Magata Y, Senda M, Konishi Y, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting.Am J Cardiol 1989; 64: 860–865.

    Article  PubMed  CAS  Google Scholar 

  5. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function.Circulation 1993; 87: 1630–1641.

    PubMed  CAS  Google Scholar 

  6. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging.N Engl J Med 1990; 323: 141–146.

    PubMed  CAS  Google Scholar 

  7. Rahimtoola SH. The hibernating myocardium.Am Heart J 1989; 117: 211–221.

    Article  PubMed  CAS  Google Scholar 

  8. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium.Circulation 1993; 87: 1–20.

    PubMed  CAS  Google Scholar 

  9. Gerber BL, Vanoverschelde JL, Bol A, Michel C, Labar D, Wijns W, et al. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation.Circulation 1996; 94: 651–659.

    PubMed  CAS  Google Scholar 

  10. Sun KT, Czernin J, Krivokapich J, Lau YK, Bottcher M, Maurer G, et al. Effects of dobutamine stimulation on myocardial blood flow, glucose metabolism, and wall motion in normal and dysfunctional myocardium.Circulation 1996; 94: 3146–3154.

    PubMed  CAS  Google Scholar 

  11. Bax JJ, Visser FC, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al. Time course of functional recovery of stunned and hibernating segments after surgical revascularization.Circulation 2001; 104: I314-I318.

    Article  PubMed  CAS  Google Scholar 

  12. Haas F, Augustin N, Holper K, Wottke M, Haehnel C, Nekolla S, et al. Time course and extent of improvement of dysfunctioning myocardium in patients with coronary artery disease and severely depressed left ventricular function after revascularization: correlation with positron emission tomographic findings.J Am Coll Cardiol 2000; 36: 1927–1934.

    Article  PubMed  CAS  Google Scholar 

  13. Sawada S, Elsner G, Segar DS, O’Shaughnessy M, Khouri S, Foltz J, et al. Evaluation of patterns of perfusion and metabolism in dobutamine-responsive myocardium.J Am Coll Cardiol 1997; 29: 55–61.

    Article  PubMed  CAS  Google Scholar 

  14. Elsasser A, Schlepper M, Klovekorn WP, Cai WJ, Zimmermann R, Muller KD, et al. Hibernating myocardium: an incomplete adaptation to ischemia.Circulation 1997; 96: 2920–2931.

    PubMed  CAS  Google Scholar 

  15. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability.Circulation 1995; 91: 1006–1015.

    PubMed  CAS  Google Scholar 

  16. Zimmermann R, Mall G, Rauch B, Zimmer G, Gabel M, Zehelein J, et al. Residual201Tl activity in irreversible defects as a marker of myocardial viability. Clinicopathological study.Circulation 1995; 91: 1016–1021.

    PubMed  CAS  Google Scholar 

  17. vom-Dahl J, Eitzman DT, Al-Aouar ZR, Kanter HL, Hicks RJ, Deeb GM, et al. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization.Circulation 1994; 90: 2356–2366.

    PubMed  CAS  Google Scholar 

  18. Udelson JE, Coleman PS, Metherall J, Pandian NG, Gomez AR, Griffith JL, et al. Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with201Tl and99mTc-sestamibi.Circulation 1994; 89: 2552–2561.

    PubMed  CAS  Google Scholar 

  19. Tamaki N, Kawamoto M, Tadamura E, Magata Y, Yonekura Y, Nohara R, et al. Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography.Circulation 1995; 91: 1697–1705.

    PubMed  CAS  Google Scholar 

  20. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, et al. Quantitative rest technetium-99m tetrofosmin imaging in predicting functional recovery after revascularization: comparison with rest-redistribution thallium-201.J Am Coll Cardiol 1997; 29: 1226–1233.

    Article  PubMed  CAS  Google Scholar 

  21. Di Carli MF, Asgarzadie F, Schelbert HR, Brunken RC, Laks H, Phelps ME, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy.Circulation 1995; 92: 3436–3444.

    PubMed  Google Scholar 

  22. Bax JJ, Poldermans D, Elhendy A, Cornel JH, Boersma E, Rambaldi R, et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography.J Am Coll Cardiol 1999; 34: 163–169.

    Article  PubMed  CAS  Google Scholar 

  23. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction.Am J Cardiol 1994; 73: 527–533.

    Article  PubMed  Google Scholar 

  24. Cuocolo A, Petretta M, Nicolai E, Pace L, Bonaduce D, Salvatore M, et al. Successful coronary revascularization improves prognosis in patients with previous myocardial infarction and evidence of viable myocardium at thallium-201 imaging.Eur J Nucl Med 1998; 25: 60–68.

    Article  PubMed  CAS  Google Scholar 

  25. Tamaki N, Kawamoto M, Takahashi N, Yonekura Y, Magata Y, Nohara R, et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging.J Am Coll Cardiol 1993; 22: 1621–1627.

    PubMed  CAS  Google Scholar 

  26. Opie LH. Metabolism of the heart in health and disease. I.Am Heart J 1968; 76: 685–698.

    Article  PubMed  CAS  Google Scholar 

  27. Opie LH. Metabolism of the heart in health and disease. 3.Am Heart J 1969; 77: 383–410.

    Article  PubMed  CAS  Google Scholar 

  28. Opie LH. Metabolism of the heart in health and disease. II.Am Heart J 1969; 77: 100–122 contd.

    Article  PubMed  CAS  Google Scholar 

  29. Opie LH. Effects of regional ischemia on metabolism of glucose and fatty acids. Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia.Circ Res 1976; 38: I52-I74.

    PubMed  CAS  Google Scholar 

  30. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography.Prog Cardiovasc Dis 1989; 32: 217–238.

    Article  PubMed  CAS  Google Scholar 

  31. King LM, Opie LH. Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow.Cardiovasc Res 1998; 39: 381–392.

    Article  PubMed  CAS  Google Scholar 

  32. Baer FM, Voth E, Deutsch HJ, Schneider CA, Horst M, de Vivie ER, et al. Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluoro-deoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization.J Am Coll Cardiol 1996; 28: 60–69.

    Article  PubMed  CAS  Google Scholar 

  33. Haas F, Jennen L, Heinzmann U, Augustin N, Wottke M, Schwaiger M, et al. Ischemically compromised myocardium displays different time-courses of functional recovery: correlation with morphological alterations?Eur J Cardiothorac Surg 2001; 20: 290–298.

    Article  PubMed  CAS  Google Scholar 

  34. Knuuti MJ, Nuutila P, Ruotsalainen U, Teras M, Saraste M, Harkonen R, et al. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET.J Nucl Med 1993; 34: 2068–2075.

    PubMed  CAS  Google Scholar 

  35. Sebree L, Bianco JA, Subramanian R, Wilson MA, Swanson D, Hegge J, et al. Discordance between accumulation of C-14 deoxyglucose and Tl-201 in reperfused myocardium.J Mol Cell Cardiol 1991; 23: 603–616.

    Article  PubMed  CAS  Google Scholar 

  36. Hashimoto K, Uehara T, Ishida Y, Nonogi H, Kusuoka H, Nishimura T. Paradoxical uptake of F-18 fluorodeoxyglucose by successfully reperfused myocardium during the subacute phase in patients with acute myocardial infarction.Ann Nucl Med 1996; 10: 93–98.

    PubMed  CAS  Google Scholar 

  37. Nonogi H, Miyazaki S, Goto Y, Ishida Y, Uehara T, Nishimura T. Efficacy and limitation of F-18-fluorodeoxy-glucose positron emission tomography during fasting to assess myocardial viability in the acute phase of myocardial infarction.Intern Med 1998; 37: 653–661.

    Article  PubMed  CAS  Google Scholar 

  38. Gropler RJ, Geltman EM, Sampathkumaran, K, Perez JE, Moerlein SM, Sobel BE, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism.J Am Coll Cardiol 1992; 20: 569–577.

    PubMed  CAS  Google Scholar 

  39. Gropler RJ, Siegel BA, Sampathkumaran K, Perez JE, Sobel BE, Bergmann SR, et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction.J Am Coll Cardiol 1992; 19: 989–997.

    PubMed  CAS  Google Scholar 

  40. Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Schechtman KB, Conversano A, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography.J Am Coll Cardiol 1993; 22: 1587–1597.

    PubMed  CAS  Google Scholar 

  41. Rubin PJ, Lee DS, Davila-Roman VG, Geltman EM, Schechtman KB, Bergmann SR, et al. Superiority of C-11 acetate compared with F-18 fluorodeoxyglucose in predicting myocardial functional recovery by positron emission tomography in patients with acute myocardial infarction.Am J Cardiol 1996; 78: 1230–1235.

    Article  PubMed  CAS  Google Scholar 

  42. Hata T, Nohara R, Fujita M, Hosokawa R, Lee L, Kudo T, et al. Noninvasive assessment of myocardial viability by positron emission tomography with11C acetate in patients with old myocardial infarction. Usefulness of low-dose dobutamine infusion.Circulation 1996; 94: 1834–1841.

    PubMed  CAS  Google Scholar 

  43. Wolpers HG, Burchert W, van den Hoff J, Weinhardt R, Meyer GJ, Lichtlen PR. Assessment of myocardial viability by use of11C-acetate and positron emission tomography. Threshold criteria of reversible dysfunction.Circulation 1997; 95: 1417–1424.

    PubMed  CAS  Google Scholar 

  44. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging.J Am Coll Cardiol 1990; 15: 1032–1042.

    Article  PubMed  CAS  Google Scholar 

  45. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect.Circulation 1988; 78: 104–115.

    PubMed  CAS  Google Scholar 

  46. Endo M, Yoshida K, Iinuma TA, Yamasaki T, Tateno Y, Masuda Y, et al. Noninvasive quantification of regional myocardial blood flow and ammonia extraction fraction using nitrogen-13 ammonia and positron emission tomography.Ann Nucl Med 1987; 1: 1–6.

    PubMed  CAS  Google Scholar 

  47. Nagamachi S, Czernin J, Kim AS, Sun KT, Bottcher M, Phelps ME, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET.J Nucl Med 1996; 37: 1626–1631.

    PubMed  CAS  Google Scholar 

  48. Tadamura E, Tamaki N, Yonekura Y, Kudoh T, Magata Y, Torizuka T, et al. Assessment of coronary vasodilator reserve by N-13 ammonia PET using the microsphere method and Patlak plot analysis.Ann Nucl Med 1995; 9: 109–118.

    PubMed  CAS  Google Scholar 

  49. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET.J Nucl Med 1993; 34: 83–91.

    PubMed  CAS  Google Scholar 

  50. Chen BC, Germano G, Huang SC, Hawkins RA, Hansen HW, Robert MJ, et al. A new noninvasive quantification of renal blood flow with N-13 ammonia, dynamic positron emission tomography, and a two-compartment model.J Am Soc Nephrol 1992; 3: 1295–1306.

    PubMed  CAS  Google Scholar 

  51. Krivokapich J, Stevenson LW, Kobashigawa J, Huang SC, Schelbert HR. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation.J Am Coll Cardiol 1991; 18: 512–517.

    PubMed  CAS  Google Scholar 

  52. Krivokapich J, Smith GT, Huang SC, Hoffman EJ, Ratib O, Phelps ME, et al.13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography.Circulation 1989; 80: 1328–1337.

    PubMed  CAS  Google Scholar 

  53. Kitsiou AN, Bacharach SL, Bartlett ML, Srinivasan G, Summers RM, Quyyumi AA, et al.13N-ammonia myocardial blood flow and uptake: relation to functional outcome of asynergic regions after revascularization.J Am Coll Cardiol 1999; 33: 678–686.

    Article  PubMed  CAS  Google Scholar 

  54. Duvernoy CS, vom Dahl J, Laubenbacher C, Schwaiger M. The role of nitrogen 13 ammonia positron emission tomography in predicting functional outcome after coronary revascularization.J Nucl Cardiol 1995; 2: 499–506.

    Article  PubMed  CAS  Google Scholar 

  55. Huang SC, Schwaiger M, Carson RE, Carson J, Hansen H, Selin C, et al. Quantitative measurement of myocardial blood flow with oxygen-15 water and positron computed tomography: an assessment of potential and problems.J Nucl Med 1985; 26: 616–625.

    PubMed  CAS  Google Scholar 

  56. Nitzsche EU, Choi Y, Czernin J, Hoh CK, Huang SC, Schelbert HR. Noninvasive quantification of myocardial blood flow in humans. A direct comparison of the [13N]ammonia and the [15O]water techniques.Circulation 1996; 93: 2000–2006.

    PubMed  CAS  Google Scholar 

  57. Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using15O-water and dynamic positron emission tomography.Circulation 1992; 86: 167–178.

    PubMed  CAS  Google Scholar 

  58. de Silva R, Yamamoto Y, Rhodes CG, Iida H, Nihoyannopoulos P, Davies GJ, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography.Circulation 1992; 86: 1738–1742.

    PubMed  Google Scholar 

  59. vom Dahl J, Muzik O, Wolfe ER Jr, Allman C, Hutchins G, Schwaiger M. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability.Circulation 1996; 93: 238–245.

    Google Scholar 

  60. Leppo JA. Myocardial uptake of thallium and rubidium during alterations in perfusion and oxygenation in isolated rabbit hearts.J Nucl Med 1987; 28: 878–885.

    PubMed  CAS  Google Scholar 

  61. Brunken RC, Mody FV, Hawkins RA, Nienaber C, Phelps ME, Schelbert HR. Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single-photon emission computed tomography201Tl defects.Circulation 1992; 86: 1357–1369.

    PubMed  CAS  Google Scholar 

  62. Kiat H, Berman DS, Maddahi J, De Yang L, Van Train K, Rozanski A, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability.J Am Coll Cardiol 1988; 12: 1456–1463.

    PubMed  CAS  Google Scholar 

  63. Taki J, Nakajima K, Bunko H, Kawasuji M, Tonami N, Hisada K. Twenty-four-hour quantitative thallium imaging for predicting beneficial revascularization.Eur J Nucl Med 1994; 21: 1212–1217.

    PubMed  CAS  Google Scholar 

  64. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with18F-fluorodeoxyglucose.Circulation 1991; 83: 26–37.

    PubMed  CAS  Google Scholar 

  65. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, et al. Significance of late redistribution thallium-201 imaging after rest injection for detection of viable myocardium.J Nucl Med 1997; 38: 1073–1078.

    PubMed  CAS  Google Scholar 

  66. Kitsiou AN, Srinivasan G, Quyyumi AA, Summers RM, Bacharach SL, Dilsizian V. Stress-induced reversible and mild-to-moderate irreversible thallium defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization?Circulation 1998; 98: 501–508.

    PubMed  CAS  Google Scholar 

  67. Qureshi U, Nagueh SF, Afridi I, Vaduganathan P, Blaustein A, Verani MS, et al. Dobutamine echocardiography and quantitative rest-redistribution201Tl tomography in myocardial hibernation. Relation of contractile reserve to201Tl uptake and comparative prediction of recovery of function.Circulation 1997; 95: 626–635.

    PubMed  CAS  Google Scholar 

  68. Glover DK, Ruiz M, Koplan BA, Watson DD, Beller GA.99mTc-tetrofosmin assessment of myocardial perfusion and viability in canine models of coronary occlusion and reperfusion.J Nucl Med 1999; 40: 142–149.

    PubMed  CAS  Google Scholar 

  69. Glover DK, Ruiz M, Edwards NC, Cunningham M, Simanis JP, Smith WH, et al. Comparison between201Tl and99mTc sestamibi uptake during adenosine-induced vasodilation as a function of coronary stenosis severity.Circulation 1995; 91: 813–820.

    PubMed  CAS  Google Scholar 

  70. Marzullo P, Parodi O, Reisenhofer B, Sambuceti G, Picano E, Distante A, et al. Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability.Am J Cardiol 1993; 71: 166–172.

    Article  PubMed  CAS  Google Scholar 

  71. Takahashi N, Reinhardt CP, Marcel R, Leppo JA. Myocardial uptake of99mTc-tetrofosmin, sestamibi, and201Tl in a model of acute coronary reperfusion.Circulation 1996; 94: 2605–2613.

    PubMed  CAS  Google Scholar 

  72. Cuocolo A, Pace L, Ricciardelli B, Chiariello M, Trimarco B, Salvatore M. Identification of viable myocardium in patients with chronic coronary artery disease: comparison of thallium-201 scintigraphy with reinjection and technetium-99m-methoxyisobutyl isonitrile.J Nucl Med 1992; 33: 505–511.

    PubMed  CAS  Google Scholar 

  73. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, et al. Myocardial viability assessment with technetium-99m-tetrofosmin and thallium-201 reinjection in coronary artery disease.J Nucl Med 1995; 36: 1961–1967.

    PubMed  CAS  Google Scholar 

  74. Acampa W, Cuocolo A, Petretta M, Bruno A, Castellani M, Finzi A, et al. Tetrofosmin imaging in the detection of myocardial viability in patients with previous myocardial infarction: comparison with sestamibi and Tl-201 scintigraphy.J Nucl Cardiol 2002; 9: 33–40.

    Article  PubMed  Google Scholar 

  75. Cuocolo A, Acampa W, Nicolai E, Pace L, Petretta M, Salvatore M. Quantitative thallium-201 and technetium 99m sestamibi tomography at rest in detection of myocardial viability in patients with chronic ischemic left ventricular dysfunction.J Nucl Cardiol 2000; 7: 8–15.

    Article  PubMed  CAS  Google Scholar 

  76. Knapp F Jr, Kropp J. BMIPP-design and development.Int J Card Imaging 1999; 15: 1–9.

    Article  PubMed  Google Scholar 

  77. Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, et al. Impaired fatty acid uptake in ischemic but viable myocardium identified by thallium-201 reinjection.Am Heart J 1996; 131: 458–465.

    Article  PubMed  CAS  Google Scholar 

  78. Taki J, Nakajima K, Matsunari I, Bunko H, Takata S, Kawasuji M, et al. Assessment of improvement of myocardial fatty acid uptake and function after revascularization using iodine-123-BMIPP.J Nucl Med 1997; 38: 1503–1510.

    PubMed  CAS  Google Scholar 

  79. Hambye AS, Vaerenberg MM, Dobbeleir AA, Van den Heuvel PA, Franken PR. Abnormal BMIPP uptake in chronically dysfunctional myocardial segments: correlation with contractile response to low-dose dobutamine.J Nucl Med 1998; 39: 1845–1850.

    PubMed  CAS  Google Scholar 

  80. Franken PR, Hambye AS, De Geeter FW. BMIPP imaging to assess functional outcome in patients with acute and chronic left ventricular dysfunction.Int J Card Imaging 1999; 15: 27–34.

    Article  PubMed  CAS  Google Scholar 

  81. Hambye AS, Dobbeleir AA, Vervaet AM, Van den Heuvel PA, Franken PR. BMIPP imaging to improve the value of sestamibi scintigraphy for predicting functional outcome in severe chronic ischemic left ventricular dysfunction.J Nucl Med 1999; 40: 1468–1476.

    PubMed  CAS  Google Scholar 

  82. Bax JJ, Visser FC, van Lingen A, Huitink JM, Kamp O, van Leeuwen GR, et al. Feasibility of, assessing regional myocardial uptake of18F-fluorodeoxyglucose using single photon emission computed tomography.Eur Heart J 1993; 14: 1675–1682.

    PubMed  CAS  Google Scholar 

  83. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Huitink JM, et al. Comparison of fluorine-18-FDG with rest-redistribution thallium-201 SPECT to delineate viable myocardium and predict functional recovery after revascularization.J Nucl Med 1998; 39: 1481–1486.

    PubMed  CAS  Google Scholar 

  84. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Reijs AE, et al. Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography.J Am Coll Cardiol 1996; 28: 558–564.

    Article  PubMed  CAS  Google Scholar 

  85. Sandler MP, Videlefsky S, Delbeke D, Patton JA, Meyerowitz C, Martin WH, et al. Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography.J Am Coll Cardiol 1995; 26: 870–878.

    Article  PubMed  CAS  Google Scholar 

  86. Fukuchi K, Katafuchi T, Fukushima K, Shimotsu Y, Toba M, Hayashida K, et al. Estimation of myocardial perfusion and viability using simultaneous99mTc-tetrofosmin—FDG collimated SPECT.J Nucl Med 2000; 41: 1318–1323.

    PubMed  CAS  Google Scholar 

  87. Matsunari I, Kanayama S, Yoneyama T, Matsudaira M, Nakajima K, Taki J, et al. Myocardial distribution of18F-FDG and99mTc-sestamibi on dual-isotope simultaneous acquisition SPET compared with PET.Eur J Nucl Med Mol Imaging 2002; 29: 1357–1364.

    Article  PubMed  CAS  Google Scholar 

  88. Toyama T, Hoshizaki H, Isobe N, Adachi H, Naito S, Oshima S, et al. Detecting viable hibernating myocardium in chronic coronary artery disease—a comparison of resting201Tl single photon emission computed tomography (SPECT),99mTc-methoxy-isobutyl isonitrile SPECT after nitrate administration, and201Tl SPECT after201Tl-glucose-insulin infusion.Jpn Circ J 2000; 64: 937–942.

    Article  PubMed  CAS  Google Scholar 

  89. Sciagra R, Bisi G, Santoro GM, Agnolucci M, Zoccarato O, Fazzini PF. Influence of the assessment of defect severity and intravenous nitrate administration during tracer injection on the detection of viable hibernating myocardium with data-based quantitative technetium 99m-labeled sestamibi single-photon emission computed tomography.J Nucl Cardiol 1996; 3: 221–230.

    Article  PubMed  CAS  Google Scholar 

  90. He ZX, Medrano R, Hays, JT, Mahmarian JJ, Verani MS. Nitroglycerin-augmented201Tl reinjection enhances detection of reversible myocardial hypoperfusion. A randomized, double-blind, parallel, placebo-controlled trial.Circulation 1997; 95: 1799–1805.

    PubMed  CAS  Google Scholar 

  91. Sciagra R, Bisi G, Santoro GM, Zerauschek F, Sestini S, Pedenovi P, et al. Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery.J Am Coll Cardiol 1997; 30: 384–391.

    Article  PubMed  CAS  Google Scholar 

  92. Sciagra R, Leoncini M, Marcucci G, Dabizzi RP, Pupi A. Technetium-99m sestamibi imaging to predict left ventricular ejection fraction outcome after revascularisation in patients with chronic coronary artery disease and left ventricular dysfunction: comparison between baseline and nitrate-enhanced imaging.Eur J Nucl med 2001; 28: 680–687.

    Article  PubMed  CAS  Google Scholar 

  93. Sciagra R, Pellegri M, Pupi A, Bolognese L, Bisi G, Carnovale V, et al. Prognostic implications of Tc-99m sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction.J Am Coll Cardiol 2000; 36: 739–745.

    Article  PubMed  CAS  Google Scholar 

  94. Matsunari I, Boning G, Ziegler SI, Nekolla SG, Stollfuss JC, Kosa I, et al. Attenuation-corrected99mTc-tetrofosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using18F-fluorodeoxyglucose.J Am Coll Cardiol 1998; 32: 927–935.

    Article  PubMed  CAS  Google Scholar 

  95. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT.J Nucl Med 1995; 36: 2138–2147.

    PubMed  CAS  Google Scholar 

  96. Stollfuss JC, Haas F, Matsunari I, Neverve J, Nekolla S, Ziegler S, et al.99mTc-tetrofosmin SPECT for prediction of functional recovery defined by MRI in patients with severe left ventricular dysfunction: additional value of gated SPECT.J Nucl Med 1999; 40: 1824–1831.

    PubMed  CAS  Google Scholar 

  97. Kuwabara Y, Watanabe S, Nakaya J, Fujiwara M, Hasegawa R, Matsuno K, et al. Functional evaluation of myocardial viability by99mTc tetrofosmin gated SPECT—a quantitative comparison with18F fluorodeoxyglucose positron emission CT (18F FDG PET).Ann Nucl Med 1999; 13: 135–140.

    Article  PubMed  CAS  Google Scholar 

  98. Yoshinaga K, Morita K, Yamada S, Komuro K, Katoh C, Ito Y, et al. Low-dose dobutamine electrocardiograph-gated myocardial SPECT for identifying viable myocardium: comparison with dobutamine stress echocardiography and PET.J Nucl Med 2001; 42: 838–844.

    PubMed  CAS  Google Scholar 

  99. Smart SC. The clinical utility of echocardiography in the assessment of myocardial viability.J Nucl Med 1994; 35: 49S-58S.

    PubMed  CAS  Google Scholar 

  100. Arnese M, Cornel JH, Salustri A, Maat A, Elhendy A, Reijs AE, et al. Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with201Tl single-photon emission computed tomography.Circulation 1995; 91: 2748–2752.

    PubMed  CAS  Google Scholar 

  101. Baumgartner H, Porenta G, Lau YK, Wutte M, Klaar U, Mehrabi M, et al. Assessment of myocardial viability by dobutamine echocardiography, positron emission tomography and thallium-201 SPECT: correlation with histopathology in explanted hearts.J Am Coll Cardiol 1998; 32: 1701–1708.

    Article  PubMed  CAS  Google Scholar 

  102. Barilla F, De Vincentis G, Mangieri E, Ciavolella M, Panitteri G, Scopinaro F, et al. Recovery of contractility of viable myocardium during inotropic stimulation is not dependent on an increase of myocardial blood flow in the absence of collateral filling.J Am Coll Cardiol 1999; 33: 697–704.

    Article  PubMed  CAS  Google Scholar 

  103. Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data.J Am Coll Cardiol 1997; 30: 1451–1460.

    Article  PubMed  CAS  Google Scholar 

  104. Ramani K, Judd RM, Holly TA, Parrish TB, Rigolin VH, Parker MA, et al. Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction.Circulation 1998; 98: 2687–2694.

    PubMed  CAS  Google Scholar 

  105. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography.Circulation 2002; 105: 162–167.

    Article  PubMed  Google Scholar 

  106. Bax JJ, Maddahi J, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al. Sequential201Tl imaging and dobutamine echocardiography to enhance accuracy of predicting improved left ventricular ejection fraction after revascularization.J Nucl Med 2002; 43: 795–802.

    PubMed  Google Scholar 

  107. Matsunari I, Taki J, Tonami N. Sequential strategy using multimodality viability tests: does it work? [invited commentary].J Nucl Med 2002; 43: 803–805.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Matsunari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsunari, I., Taki, J., Nakajima, K. et al. Myocardial viability assessment using nuclear imaging. Ann Nucl Med 17, 169–179 (2003). https://doi.org/10.1007/BF02990019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02990019

Key words

Navigation