Abstract
Increasing numbers of value added chemicals are being produced using microbial fermentation strategies. Computational modeling and simulation of microbial metabolism is rapidly becoming an enabling technology that is driving a new paradigm to accelerate the bioprocess development cycle. In particular, constraint-based modeling and the development of genome-scale models of industrial microbes are finding increasing utility across many phases of the bioprocess development workflow. Herein, we review and discuss the requirements and trends in the industrial application of this technology as we build toward integrated computational/experimental platforms for bioprocess engineering. Specifically we cover the following topics: (1) genome-scale models as genetically and biochemically consistent representations of metabolic networks; (2) the ability of these models to predict, assess, and interpret metabolic physiology and flux states of metabolism; (3) the model-guided integrative analysis of high throughput ‘omics’ data; (4) the reconciliation and analysis of on- and off-line fermentation data as well as flux tracing data; (5) model-aided strain design strategies and the integration of calculated biotransformation routes; and (6) control and optimization of the fermentation processes. Collectively, constraint-based modeling strategies are impacting the iterative characterization of metabolic flux states throughout the bioprocess development cycle, while also driving metabolic engineering strategies and fermentation optimization.
This is a preview of subscription content, access via your institution.
References
Price, N. D., J. L. Reed, and B. O. Palsson (2004) Genome-scale models of microbial cells: Evaluating the consequences of constraints.Nat. Rev. Microbiol. 2: 886–897.
Edwards, J. S. and B. O. Palsson (2000) TheEscherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities.Proc. Natl. Acad. Sci. USA 97: 5528–5533.
Reed, J. L., T. D. Vo, C. H. Schilling, and B. Palsson (2003)Escherichia coli iJR904: An expanded genomescale model ofE. coli K-12.Genome Biol. 4: R54.1-R54.12.
Famili, I., J. Forster, J. Nielsen, and B. O. Palsson (2003)Saccharomyces: cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network.Proc. Natl. Acad. Sci. USA 100: 13134–13139.
Dauner, M. and U. Sauer (2001) Stoichiometric growth model for riboflavin-producingBacillus subtilis.Biotechnol. Bioeng. 76: 132–143.
Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim (2004) The genome sequence of the capnophilic rumen bacteriumMannheimia succiniciproducens.Nat. Biotechnol. 22: 1275–1281.
Covert, M. W., E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson (2004) Integrating high-throughput and computational data elucidates bacterial networks.Nature 429: 92–96.
Ciaramella, M., A. Napoli, and M. Rossi (2005) Another extreme genome: How to live at pH 0.Trends Microbiol. 13: 49–51.
Forster, J., I. Famili, P. Fu, B. O. Palsson, and J. Nielson (2003) Genome-scale reconstruction of theSaccharomyces cerevisiae metabolic network.Genome Res. 13: 244–253.
Schilling, C. H., M. W. Covert, I. Famili, G. M. Church, J. S. Edwards, and B. O. Palsson (2002) Genome-scale metabolic model ofHelicobacter pylori 26695.J. Bacteriol. 184: 4582–4593.
Varma, A., B. W. Boesch, and B. O. Palsson (1993) Stoichiometric interpretation ofEscherichia coli glucose catabolism under various oxygenation rates.Appl. Environ. Microbiol. 59: 2465–2473.
Varma, A. and B. O. Palsson (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-typeEscherichia coli W3110.Appl. Environ. Microbiol. 60: 3724–3731.
Edwards, J. S., R. U. Ibarra, and B. O. Palsson (2001)In silico predictions ofEscherichia coli metabolic capabilities are consistent with experimental data.Nat. Biotechnol. 19: 125–130.
Ibarra, R. U., J. S. Edwards, and B. O. Palsson (2002)Escherichia coli K-12 undergoes adaptive evolution to achievein silico predicted optimal growth.Nature 420: 186–189.
Varma, A., B. W. Boesch, and B. O. Palsson (1993) Biochemical production capabilities ofEscherichia coli.Biotechnol. Bioeng. 42: 59–73.
Edwards, J. S. and B. O. Palsson (2000) Metabolic flux balance analysis and thein silico analysis ofEscherichia coli K-12 gene deletions.BMC Bioinformatics 1: 1.
Segre, D., D. Vitkup, and G. M. Church (2002) Analysis of optimality in natural and perturbed metabolic networks.Proc. Natl. Acad. Sci. USA 99: 15112–15117.
Shlomi, T., O. Berkman, and E. Ruppin (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations.Proc. Natl. Acad. Sci. USA 102: 7695–7700.
Papp, B., C. Pal, and L. D. Hurst (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast.Nature 429: 661–664.
Segre, D., A. Deluna, G. M. Church, and R. Kishony (2005) Modular epistasis in yeast metabolism.Nat. Genet. 37: 77–83.
Mahadevan, R. and B. O. Palsson (2005) Properties of metabolic networks: Structure versus function.Biophys. J. 88: L07-L09.
DeRisi, J. L., V. R. Iyer, and P. O. Brown (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale.Science 278: 680–686.
Patterson, S. D. and R. H. Aebersold (2003) Proteomics: The first decade and beyond.Nat. Genet. 33 Suppl: 311–323.
Kell, D. B. (2004) Metabolomics and systems biology: making sense of the soup.Curr. Opin. Microbiol. 7: 296–307.
Churchill, G. A. (2004) Using ANOVA to analyze microarray data.Biotechniques 37: 173–177.
Sharan, R., R. Elkon, and R. Shamir (2002) Cluster analysis and its applications to gene expression data.Ernst. Schering. Res. Found. Workshop 83–108.
Ideker, T., V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng, R. Bumgarner, D. R. Goodlett, R. Aebersold, and L. Hood (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.Science 292: 929–934.
Burgard, A. P., E. V. Nikolaev, C. H. Schilling, and C. D. Maranas (2004) Flux coupling analysis of genome-scale metabolic network reconstructions.Genome Res. 14: 301–312.
Oh, M. K. and J. C. Liao (2000) Gene expression profiling by DNA microarrays and metabolic fluxes inEscherichia coli.Biotechnol. Prog. 16: 278–286.
Tao, H., R. Gonzalez, A. Martinez, M. Rodriguez, L. O. Ingram, J. F. Preston, and K. T. Shanmugam (2001) Engineering a homo-ethanol pathway inEscherichia coli: Increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation.J. Bacteriol. 183: 2979–2988.
Akesson, M., J. Forster, and J. Nielsen (2004) Integration of gene expression data into genome-scale metabolic models.Metab. Eng. 6: 285–293.
Patil, K. R. and J. Nielsen (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology.Proc. Natl. Acad. Sci. USA 102: 2685–2689.
Covert, M. W., C. H. Schilling, and B. Palsson (2001) Regulation of gene expression in flux balance models of metabolism.J. Theor. Biol. 213: 73–88.
van der Heijden, R. T. J. M., J. J. Heijnen, C. Hellinga, B. Romein, and K. C. A. M. Luyben (1994) Linear constraint relations in biochemical reaction systems: II. Diagnosis and estimation of gross measurement errors.Biotechnol. Bioeng. 43: 11–20.
Raghunathan, A. U., J. R. Perez-Correa, and L. T. Biegler (2003) Data reconciliation and parameter estimation in flux-balance analysis.Biotechnol. Bioeng. 84: 700–708.
Mahadevan, R. and C. H. Schilling (2003) The effects of alternate optimal solutions in constraint-based genomescale metabolic models.Metab. Eng. 5: 264–276.
Vallino, J. J. and G. Stephanopoulos (1993) Metabolic fluc distributions inCorynebacterium glutamicum during growth and lysine overproduction.Biotechnol. Bioeng. 41: 633–646.
van Gulik, W. M., W. T. de Laat, J. L. Vinke, and J. J. Heijnen (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G.Biotechnol. Bioeng. 68: 602–618.
Schilling, C. H., J. S. Edwards, and B. O. Palsson (1999) Toward metabolic phenomics: Analysis of genomic data using flux balances.Biotechnol. Prog. 15: 288–295.
Shimizu, H., N. Takiguchi, H. Tanaka, and S. Shioya (1999) A maximum production strategy of lysine based on a simplified model derived from a metabolic reaction network.Metab. Eng. 1: 299–308.
Wiechert, W. (2001)13C metabolic flux analysis.Metab. Eng. 195–206.
Marx, A., A. A. de Graaf, W. Wiechert, L. Eggeling, and H. Sahm (1996) Determination of the fluxes in central metabolism ofCorynebacterium glutamicum by NMR spectroscopy combined with metabolite balancing.Biotechnol. Bioeng. 49: 111–129.
Dauner, M. and U. Sauer (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing.Biotechnol. Prog. 16: 642–649.
Schmidt, K., M. Carlsen, J. Nielsen, and J. Villadsen (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices.Biotechnol. Bioeng. 55: 831–840.
van Dien, S. J., T. Strovas, and M. E. Lidstrom (2003) Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using13C-label tracing and mass spectrometry.Biotechnol Bioeng. 84: 45–55.
Wiechert, W., C. Siefke, A. A. de Graaf, and A. Marx (1997) Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis.Biotechnol. Bioeng. 55: 118–135.
Wiechert, W. and A. A. de Graaf (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.Biotechnol. Bioeng. 55: 101–117.
Wittmann, C. and E. Heinzle (1999) Mass spectrometry for metabolic flux analysis.Biotechnol. Bioeng. 62: 739–750.
Walsh, K. and D. E. Jr. Koshland (1984) Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt.J. Biol. Chem. 259: 9646–9654.
Park, S. M., M. I. Klapa, A. J. Sinskey, and G. N. Stephanopoulos (1999) Metabolite and isotopomer balancing in the analysis of metabolic cycles: II. Applications.Biotechnol. Bioeng. 62: 392–401.
Wendisch, V. F., A. A. de Graaf, H. Sahm, and B. J. Eikmanns (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: Comparative analyses withCorynebacterium glutamicum during growth on acetate and/or glucose.J. Bacteriol. 182: 3088–3096.
Petersen, S., A. A. de Graaf, L. Eggeling, M. Mollney, W. Wiechert, and H. Sahm (2000)In vivo quantification of parallel and bidirectional fluxes in the anaplerosis ofCorynebacterium glutamicum.Metab. Eng. 3: 195–206.
Wittmann, C., H. M. Kim, and E. Heinzle (2004) Metabolic network analysis of lysine producingCorynebacterium glutamicum at a miniaturized scale.Biotechnol. Bioeng. 87: 1–6.
Sauer, U., D. R. Lasko, J. Fiaux, M. Hochuli, R. Glaser, T. Szyperski, K. Wuthrich, and J. E. Bailey (1999) Metabolic flux ratio analysis of genetic and environmental modulations ofEscherichia coli central carbon metabolism.J. Bacteriol. 181: 6679–6688.
Wahl, A., M. El Massaoudi, D. Schipper, W. Wiechert, and R. Takors (2004) Serial13C-based flux analysis of an L-phenylalanine-producingE. coli strain using a sensor reactor.Biotechnol. Prog. 20: 706–714.
Sauer, U., V. Hatzimanikatis, J. E. Bailey, M. Hochuli, T. Szyperski, and K. Wuthrich (1997) Metabolic fluxes in riboflavin-producingBacillus subtilis.Nat. Biotechnol. 15: 448–452.
Gombert, A. K., S. M. Moreirados, B. Christensen, and J. Nielsen (2001) Network identification and flux quantification in the central metabolism ofSaccharomyces cerevisiae under different conditions of glucose repression.J. Bacteriol. 183: 1441–1451.
Christensen, B. and J. Nielsen (2000) Metabolic network analysis ofPenicillium chrysogenum using13C-labeled glucose.Biotechnol. Bioeng. 68: 652–659.
Jensen, N. B. S., B. Christensen, J. Nielsen, and J. Villadsen (2002) The simultaneous biosynthesis and uptake of amino acids byLactococcus lactis studied by13C-labeling experiments.Biotechnol. Bioeng. 78: 11–16.
Burgard, A. P. and C. D. Maranas (2001) Probing the performance limits of theEscherichia coli metabolic network subject to gene additions or deletions.Biotechnol. Bioeng. 74: 364–375.
Carlson, R., D. Fell, and F. Sriene (2002) Metabolic pathway analysis of a recombinant yeast for rational strain development.Biotechnol. Bioeng. 79: 121–34.
Fong, S. S. and B. O. Palsson (2004) Metabolic genedeletion strains ofEscherichia coli evolve to computationally predicted growth phenotypes.Nat. Genet. 36: 1056–1058.
Burgard, A. P., P. Pharkya, and C. D. Maranas (2003) OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization.Biotechnol. Bioeng. 84: 647–657.
Pharkya, P., A. P. Burgard, and C. D. Maranas (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock.Biotechnol. Bioeng. 84: 887–899.
Alper, H., Y. S. Jin, J. F. Moxley, and G. Stephanopoulos (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis inEscherichia coli.Metab. Eng. 7: 155–164.
Wilson, E. K. (2005) Engineering cell-based factories.Chem. Eng. News 83: 41–44.
Broadbelt, L. J., S. M. Stark, and M. T. Klein (1994) Computer-generated pyrolysis modeling-on-the-fly generation of species, reactions, and rates.Ind. Eng. Chem. Res. 33: 790–799.
Broadbelt, L. J., S. M. Stark, and M. T. Klein (1995) Termination of computer-generated reaction-mechanisms-species rank-based convergence criterion.Ind. Eng. Chem. Res. 34: 2566–2573.
Broadbelt, L. J., S. M. Stark, and M. T. Klein (1996) Computer generated reaction modelling: Decomposition and encoding algorithms for determining species uniqueness.Comput. Chem. Eng. 20: 113–129.
Hatzimanikatis, V., C. Li, J. A. Ionita, and L. J. Broadbelt (2004) Metabolic networks: Enzyme function and metabolite structure.Curr. Opin. Struct. Biol. 14: 300–306.
Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno, and M. Hattori (2004) The KEGG resource for deciphering the genome.Nucleic Acids Res. 32 Database issue: D277–D280.
Karp, P. D., M. Riley, M. Saier, I. T. Paulsen, S. M. Paley, and A. Pellegrini-Toole (2000) The EcoCyc and MetaCyc databases.Nucleic Acids Res. 28: 56–59.
Krieger, C. J., P. Zhang, L. A. Mueller, A. Wang, S. Paley, M. Arnaud, J. Pick, S. Y. Rhee, and P. D. Karp (2004) MetaCyc: A multiorganism database of metabolic pathways and enzymes.Nucleic Acids Res. 32 Database issue: D438–D442.
Li, C., C. S. Henry, M. D. Jankowski, J. A. Ionita, V. Hatzimanikatis, and L. J. Broadbelt (2004) Computational discovery of biochemical routes to specialty chemicals.Chem. Eng. Sci. 59: 5051–5060.
Hatzimanikatis, V., C. Li, J. A. Ionita, C. S. Henry, M. D. Jankowski, and L. J. Broadbelt (2005) Exploring the diversity of complex metabolic networks.Bioinformatics 21: 1603–1609.
Pharkya, P., A. P. Burgard, and C. D. Maranas (2004) OptStrain: A computational framework for redesign of microbial production systems.Genome Res. 14: 2367–2376.
Komives, C. and R. S. Parker (2003) Bioreactor state estimation and control.Curr. Opin. Biotechnol. 14: 468–474.
Covert, M. W. and B. O. Palsson (2002) Transcriptional regulation in constraints-based metabolic models ofEscherichia coli.J. Biol. Chem. 277: 28058–28064.
Mahadevan, R., J. S. Edwards, and F. J. Doyle (2002) Dynamic flux balance analysis of diauxic growth inEscherichia coli.Biophysical J. 83: 1331–1340.
Gadkar, K. G., F. J. Doyle, III, T. J. Crowley, and J. D. Varner (2003) Cybernetic model predictive control of a continuous bioreactor with cell recycle.Biotechnol Prog. 19: 1487–1497.
Mahadevan, R. and F. J. Doyle (2003) On-line optimization of recombinant product in a fed-batch bioreactor.Biotechnol. Prog. 19: 639–646.
Parekh, S., V. A. Vinci, and R. J. Strobel (2000) Improvement of microbial strains and fermentation processes.Appl. Microbiol. Biotechnol. 54: 287–301.
Zhang, S., J. Chu, and Y. Zhuang (2004) A multi-scale study of industrial fermentation processes and their optimization.Adv. Biochem. Eng. Biotechnol. 87: 97–150.
Gadkar, K. G., F. J. Doyle, J. S. Edwards, and R. Mahadevan (2005) Estimating optimal profiles of genetic alterations using constraint-based models.Biotechnol. Bioeng. 89: 243–251.
Lovley, D. R. (2003) Cleaning up with genomics: Applying molecular biology to bioremediation.Nat. Rev. Microbiol. 1: 35–44.
Beard, D. A. and H. Qian (2005) Thermodynamic-based computational profiling of cellular regulatory control in hepatocyte metabolism.Am. J. Physiol. Endocrinol. Metab. 288: E633-E644.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mahadevan, R., Burgard, A.P., Famili, I. et al. Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals. Biotechnol. Bioprocess Eng. 10, 408–417 (2005). https://doi.org/10.1007/BF02989823
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02989823
Keywords
- bioprocess development
- constraint-based modeling
- metabolic engineering
- SimPheny®