Skip to main content
Log in

Interaction Between Dietary Carbohydrate and Copper Nutriture on Lipid Peroxidation in Rat Tissues

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of the interactions between dietary carbohydrates and copper deficiency on superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and their roles in peroxidative pathways were investigated. Weanling rats were fed diets deficient in copper and containing either 62% starch, fructose, or glucose. Decreased activity of SOD was noted in all rats fed the copper-deficient diets regardless of the nature of dietary carbohydrate. However, the decreased activity was more pronouced in rats fed fructose. Feeding the fructose diets decreased the activity of GSH-Px by 25 and 50% in the copper-supplemented and copper-deficient rats, respectively, compared to enzyme activities in rats fed similar diets containing either starch or glucose. The decreased SOD and GSH-Px activities in rats fed the fructose diet deficient in copper were associated with increased tissue per-oxidation and decreased hepatic adenosine triphosphate (ATP). When the fructose in the diet of copper-deficient rats was replaced with either starch or glucose, tissue SOD and GSH-Px activities were increased and these increases in enzyme activity were associated with a tendency toward reduced mitochondrial peroxidation when compared to the corre-sponding values for rats fed fructose throughout the experiment Dietary fructose aggrevated the symptoms associated with copper deficiency, but starch or glucose ameliorated them. The protective effects were more pronounced with starch than with glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Prohaska and W. W. Wells,J. Neurochem. 23, 91 (1974).

    Article  PubMed  CAS  Google Scholar 

  2. D. M. Williams, R. E. Lynch, G. R. Lee, and G. E. Cartwright,Proc. Soc. Exp. Biol. Med. 149, 534 (1975).

    PubMed  CAS  Google Scholar 

  3. R. F. Morgan and B. L. O’Dell,J. Neurochem. 28, 207 (1977).

    Article  PubMed  CAS  Google Scholar 

  4. D. I. Paynter, R. J. Moir, and E. J. Underwood,J. Nutr. 109, 1570 (1979).

    PubMed  CAS  Google Scholar 

  5. K. A. Andrewartha and I. W. Caple,Res. Vet. Sci. 28, 101 (1980).

    PubMed  CAS  Google Scholar 

  6. D. I. Paynter,Biol. Trace Elem. Res. 2, 121 (1980).

    Article  CAS  Google Scholar 

  7. D. I. Paynter and G. B. Martin,Biol. Trace Elem. Res. 2, 175 (1980).

    Article  CAS  Google Scholar 

  8. E. W. Kellogg and I. Fridovich,J. Biol. Chem. 252, 6721 (1977).

    PubMed  CAS  Google Scholar 

  9. P. S. Balevska, E. M. Russanov, and T. A. Kassabova,Int. J. Biochem. 13, 489 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. S. G. Jenkinson, R. A. Lawrence, R. F. Burk, and D. M. Williams,J. Nutr. 112, 197 (1982).

    PubMed  CAS  Google Scholar 

  11. J. R. Prohaska, T. L. Smith, and D. E. Gutsch, inNew Zealand Workshop on Trace Elements in New Zealand, J. V. Dunckley, ed., University of Otago, Dunedin, New Zealand, 1981, pp. 261–267.

    Google Scholar 

  12. J. R. Prohaska and D. E. Gutsch,Biol Trace Elem. Res. 5, 35 (1983).

    Article  CAS  Google Scholar 

  13. S. Reiser, R. J. Ferretti, M. Fields, and J. C. Smith, Jr.,Am. J. Clin. Nutr. 38, 214 (1983).

    PubMed  CAS  Google Scholar 

  14. M. Fields, R. J. Ferretti, J. C. Smith, and S. Reiser,Am. J. Clin. Nutr. 39, 289 (1984).

    PubMed  CAS  Google Scholar 

  15. T. C. Pederson and S. D. Aust,Biochem. Biophys. Res. Comm. 52, 1071 (1973).

    Article  PubMed  CAS  Google Scholar 

  16. G. Haase and W. L. Dunkley,J. Lipid Res. 10, 561 (1969).

    PubMed  CAS  Google Scholar 

  17. E. D. Wills,Biochem. Biophys. Acta 98, 238 (1965).

    PubMed  CAS  Google Scholar 

  18. T. Noguchi, A. H. Cantor, and M. L. Scott,J. Nutr. 103, 1502 (1973).

    PubMed  CAS  Google Scholar 

  19. K. M. Wilbur, F. Bernheim, and O. W. Shapiro,Arch. Biochem. 24, 305 (1949).

    PubMed  CAS  Google Scholar 

  20. C. K. Chow and A. L. Tappel,Lipids 7, 518 (1972).

    Article  PubMed  CAS  Google Scholar 

  21. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  22. G. Glaser and J. Mager,Biochem. Biophys. Acta 261, 487 (1972).

    CAS  Google Scholar 

  23. H. Adam, Adenosine 5’-triphosphate determination with phosphocreatine phosphate, inMethods of Enzymatic Analysis, H. U. Bergmeyer, ed., Academic Press, New York, 1963, pp. 539–543.

    Google Scholar 

  24. K. H. Schosinsky, H. P. Lehmann, and M. F. Beeler,Clin. Chem. 20, 1556 (1974).

    PubMed  CAS  Google Scholar 

  25. D. I. Paynter,J. Nutr. 110, 437 (1980).

    PubMed  CAS  Google Scholar 

  26. H. P. Misra and I. Fridovich,Arch. Biochem. Biophys. 181, 308 (1977).

    Article  PubMed  CAS  Google Scholar 

  27. D. E. Paglia and W. N. Valentine,J. Lab. Clin. Med. 70, 158 (1967).

    PubMed  CAS  Google Scholar 

  28. O. A. Levander, D. P. LeLoach, V. C. Morris, and P. B. Moser,J. Nutr. 113, 55 (1983).

    PubMed  CAS  Google Scholar 

  29. G. W. Snedecor and W. G. Cochran, inStatistical Methods, Iowa State University Press, Ames, Iowa, 1967, pp. 271–275.

    Google Scholar 

  30. T. Kassabova and E. Russanov,Agressologie 16C, 1, (1975).

    Google Scholar 

  31. I. Fridovich, Oxygen Radicals, Hydrogen Peroxide, and Oxygen Toxicity, inFree Radicals in Biology, Vol. 1, W. A. Pryor, ed., Academic Press, New York, pp. 239–277.

  32. E. Weisenberg, A. Halbreich, and J. Mager,Biochem. J. 188, 633, (1980).

    PubMed  CAS  Google Scholar 

  33. H. B. Burch, O. E. Lowry, P. Meinhardt, P. Max, Jr., and K. Chyu,J. Biol. Chem. 245, 2092 (1970).

    PubMed  CAS  Google Scholar 

  34. H. F. Woods, L. V. Eggleston, and H. A. Krebs,Biochem. J. 119, 501 (1970).

    PubMed  CAS  Google Scholar 

  35. G. H. Gallagher and V. E. Reeve,Aust. J. Exptl. Biol Med. Sci. 49, 453 (1971).

    Article  CAS  Google Scholar 

  36. E. A. Ivancheva and E. M. Russanov,Acad. Bulg. Sci. 28, 975 (1975).

    CAS  Google Scholar 

  37. L. M. Klevay, S. J. Rech, and D. F. Barcome,J. Am. Med. Assoc. 241, 1916 (1979).

    Article  CAS  Google Scholar 

  38. L. Sestoft,Nutr. Update 1, 39 (1983).

    CAS  Google Scholar 

  39. K. McNutt,Nutr. Rev. 38, 353 (1980).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fields, M., Ferretti, R.J., Cecil Smith, J. et al. Interaction Between Dietary Carbohydrate and Copper Nutriture on Lipid Peroxidation in Rat Tissues. Biol Trace Elem Res 6, 379–391 (1984). https://doi.org/10.1007/BF02989255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02989255

Index Entries

Navigation