Skip to main content
Log in

Influence of sex, strain, and species on trace metal status of insulin-deficient diabetic rodents

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated marked alterations in trace metal metabolism in male Sprague-Dawley rats following chemical induction of the diabetic state. To determine whether such changes represented a general response to the insulin-deficient condition the levels of zinc, copper, and maganese in liver, kidney, and intestine of normal and streptozotocin (STZ)-diabetic male rats of the Sprague-Dawley, Wistar, and Long-Evans strains, female Sprague-Dawley rats, and male mice were measured. Significantly increased concentrations of zinc, copper, and maganese in liver, and zinc and copper in kidney were found in STZ-diabetic rats, regardless of sex and strain. In contrast, the zinc and copper contents in liver and kidney of control and STZ-diabetic mice were similar, but hepatic manganese levels were significantly elevated in both organs of the diabetic mouse. The concentrations of all three metals were similar in the intestine of control and diabetic rodents. Higher amounts of zinc and copper were bound to metallothionein in the liver and kidney of the diabetic rats. Nicotinamide injection prior to STZ administration protected rats against the development of diabetes and alterations in trace metal status. These data indicate that specific alterations in the metabolism of zinc, copper and manganese during episodes of pancreatic hormonal imbalance represent a general phenomenon in the rat. A possible explanation for the differential response of the STZ-diabetic mouse is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Evans,Physiol. Rev. 53, 535 (1973).

    PubMed  CAS  Google Scholar 

  2. H. N. Munro and M. C Linder,Physiol. Rev. 58, 317 (1978).

    PubMed  CAS  Google Scholar 

  3. R. J. Cousins,Amer. J. Clin. Nutr. 32, 339 (1979).

    PubMed  CAS  Google Scholar 

  4. R. I. Henkin,Med. Clin. N. Amer. 60, 779 (1976).

    PubMed  CAS  Google Scholar 

  5. R. J. Cousins and M. L. Failla, inZinc in the Environment. Part II Health Effects, J. O. Nriagu, ed., Wiley, New York, 1980, pp. 121–136.

    Google Scholar 

  6. K. R. Etzel, S. G. Shapiro, and R. J. Cousins,Biochem. Biophys. Res. Comm. 89, 1120 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. F. O. Brady,Life Sci. 28, 1647 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. K. R. Etzel and R. J. Cousins,Proc. Soc. Exptl. Biol. Med. 167, 233 (1981).

    CAS  Google Scholar 

  9. C. G. Rerup,Pharmacol. Rev. 22, 485 (1970).

    PubMed  CAS  Google Scholar 

  10. M. L. Failla and R. A. Kiser,J. Nutr. 111, 1900 (1981).

    PubMed  CAS  Google Scholar 

  11. M. L. Failla and R. A. Kiser,Amer. J. Physiol. 244 (Endocnnol. Metab. 7), E115 (1983).

    PubMed  CAS  Google Scholar 

  12. J. S. Bond, M. L. Failla and D. F. Unger,J. Biol. Chem. 258, 8004 (1983).

    PubMed  CAS  Google Scholar 

  13. N. E. Craft and M. L. Failla,Amer. J. Physiol. 244 (Endocrinol. Metab. 7) E122 (1983).

    PubMed  CAS  Google Scholar 

  14. A. L. Lau and M. L. Failla,Fed. Proc. 42, 823, (Abstract 3109, 1983).

    Google Scholar 

  15. M. L. Failla, N. E. Craft, and G. A. Weinberg,Proc. Soc. Exp. Biol. Med. 172, 445 (1983).

    PubMed  CAS  Google Scholar 

  16. J. L. Bailey, inTechniques in Protein Chemistry, Elsevier, New York, 383, 1962.

    Google Scholar 

  17. F. O. Brady,Trends Biochem. Sci. 7, 143 (1982).

    Article  CAS  Google Scholar 

  18. R. W. Olafson,J. Nutr. 113, 268 (1983).

    PubMed  CAS  Google Scholar 

  19. S. Tauri,Endocrinol Japon. 10, 1 (1963).

    Google Scholar 

  20. G. Hallmans and F. Lithner,Upsala J. Med. Sci. 85, 59 (1980).

    Article  PubMed  CAS  Google Scholar 

  21. L. P. Grigorieva,Med. Radiol. (Moscow) 11, 41 (1966).

    Google Scholar 

  22. V. G. R. Constan, W. Leemann, F. Almasy, and A. G. Constan,Schweiz. Med. Wschr. 94, 1104 (1964).

    Google Scholar 

  23. H. G. Pidduck, P. J. J. Wren, and D. A. P. Evans,Diabetes 19, 240 (1970).

    PubMed  CAS  Google Scholar 

  24. P. McNair, S. Kiilerich, C. Christiansen, M. S. Christensen, S. Madsbad, and I. Transbol, Clin. Chim. Acta112, 343 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. H. Hirsch-Kobb, H. J. Kolb, and D. M. Greenberg,J. Biol. Chem. 246, 395 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Submitted in partial fulfillment of requirements for the Undergraduate Degree “in Honors” in Biochemistry and Nutrition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spittle, S.A., Failla, M.L. Influence of sex, strain, and species on trace metal status of insulin-deficient diabetic rodents. Biol Trace Elem Res 5, 489–502 (1983). https://doi.org/10.1007/BF02988941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988941

Index entries

Navigation