Skip to main content
Log in

99mTc-sestamibi muscle scintigraphy to assess the response to neuromuscular electrical stimulation of normal quadriceps femoris muscle

  • Short Communication
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

Neuromuscular electrical stimulation (NMES) is widely used for improving muscle strength by simultaneous contraction in the prevention of muscle atrophy. Although there exist many clinical methods for evaluating the therapeutic response of muscles,99mTc-sestamibi which is a skeletal muscle perfusion and metabolism agent has not previously been used for this purpose. The aim of our work was to ascertain whether99mTc-sestamibi muscle scintigraphy is useful in the monitoring of therapeutic response to NMES in healthy women.

Methods

The study included 16 women aged between 21 and 45, with a mean age of 32.7±6.4. Both quadriceps femoris muscles (QFM) of each patient were studied. After randomization to remove the effect of the dominant side, one QFM of each patient was subjected to the NMES procedure for a period of 20 days. NMES was performed with an alternating biphasic rectangular current, from a computed electrical stimulator daily for 23 minutes. After measurement of skinfold thickness over the thigh, pre- and post-NMES girth measurements were assessed in centimeters. Sixty minutes after injections of 555 MBq99mTc-sestamibi, static images of the thigh were obtained for 5 minutes. The thigh-to-knee uptake ratio was calculated by semiquantitative analysis and normalized to body surface area (NUR=normalized uptake ratio).

Results

The difference between the pre and post NMES NUR values was significant (1.76±0.31 versus 2.25±0.38, p=0.0000). The percentage (%) increase in NUR values also well correlated with the % increase in thigh girth measurements (r=0.89, p=0.0000).

Conclusion

These results indicated that99mTc-sestamibi muscle scintigraphy as a new tool may be useful in evaluating therapeutic response to NMES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Romero JA, Sanford TL, Schroeder RV. The effects of electrical stimulation of normal quadriceps on strength and girth.Med Sci Sports Exerc 1982; 14: 194–197.

    PubMed  CAS  Google Scholar 

  2. Cabric M, Appell HJ. Effect of electrical stimulation of high and low frequency on maximum isometric force and some morphological characteristics in men.Int J Sports Med 1987; 8: 256–260.

    Article  PubMed  CAS  Google Scholar 

  3. Laughmann RK, Youdas JW, Garrett TR, Chao EYS. Strength changes in the normal quadriceps femoris muscle as a result of electrical stimulation.Physşcal Theraphy 1983; 63: 494–499.

    Google Scholar 

  4. Balogun JA, Onari OO, Akiju OA. High voltage electrical stimulation in the augmentation of muscle strength: effects of pulse frequency.Arch Phys Med Rehabil 1993; 74: 910–916.

    PubMed  CAS  Google Scholar 

  5. Edgerton VR. Mammalian muscle fiber types and their adaptability.Am Zool 1978; 18: 113–125.

    Google Scholar 

  6. Boumann HD, Shaffer KJ. Physiological basis of electrical stimulation of human muscle and its clinical application.Phys Ther Rev 1957; 37: 207–223.

    Google Scholar 

  7. Hudlicka O, Tyler KR. The effect of long-term high-frquency stimulation on capillary density and fibre types in rabbit fast muscles.J Physiol 1984; 353: 435–445.

    PubMed  CAS  Google Scholar 

  8. Cabric M, Appell HJ, Resic A. Fine structural changes in electrostimulated human skeletal muscle. Evidence for predominant effects on fast muscle fibres.Eur J Appl Physiol 1988; 57: 1–5.

    Article  CAS  Google Scholar 

  9. Cabric M, Appell HJ, Resic A. Effects of different frequencies on the myonuclei and fiber size in human muscle.Int J Sports Med 1987; 8: 323–326.

    Article  PubMed  CAS  Google Scholar 

  10. Eriksson E. Sports injuries of the knee ligaments: their diagnosis, treatment, rehabilitation, and prevention.Med Sci Sports 1976; 8: 133–144.

    PubMed  CAS  Google Scholar 

  11. Lake DA. Neuromuscular electrical stimulation: an overview and its application in the treatment of sports injuries.Sports Med 1992; 13: 320–336.

    Article  PubMed  CAS  Google Scholar 

  12. Sayman HB, Urgancioglu I. Muscle perfusion with technetium-MIBI in lower extremity peripheral arterial disease.J Nucl Med 1991; 32: 1700–1703.

    PubMed  CAS  Google Scholar 

  13. Miles KA, Barber RW, Wraight EP, Cooper M, Appleton DS. Leg muscle scintigraphy with Tc99m-MIBI in the assessment of peripheral vascular [arterial] disease.Nucl Med Commun 1992; 13: 563–603.

    Article  Google Scholar 

  14. Bostrom PA, Diemer H, Leide S, Lilja B, Bergqvist D.99Tcm-sestamibi uptake in the leg muscles and in the myocardium in patients with intermittent claudication.Angiology 1993; 44 (12): 971–976.

    Article  PubMed  CAS  Google Scholar 

  15. Wann LS, Hellman C, Dorros G. Evaluation of leg perfusion during exercise using technetium 99m sestamibi. A new test for peripheral vascular disease.Echocardiography 1992; 9 (5): 547–552.

    Article  PubMed  CAS  Google Scholar 

  16. Scopinaro F, Manni C, Micchelli A, Mossa R, Vincentis GD, Schillachi O, et al. Muscular uptake of Tc-99m MIBI and T1-201 in Duchenne muscular dystrophy.Clin Nucl Med 1996; 21: 792–796.

    Article  PubMed  CAS  Google Scholar 

  17. Cittanti C, Colamussi P, Giganti M, Orlandi C, Uccelli L, Manfrini S, et al. Technetium-99m sestamibi leg scintigraphy for non-invasive assessment of propionyll-carnitine induced changes in skeletal muscle metabolism.Eur J Nucl Med 1997; 24: 762–766.

    PubMed  CAS  Google Scholar 

  18. Edwards PD, Miles KA, Owens SJ, Kemp PM, Jenner JR. A new non-invasive test for the detection of compartment syndromes.Nucl Med Commun 1999; 20 (3): 215–218.

    Article  PubMed  CAS  Google Scholar 

  19. Aygit C, Sarikaya A. Technetium-99m sestamibi scintigraphy for non-invasive assessment of muscle flap viability.Ann Plas Surg 1999; 43 (3): 338–340.

    Article  CAS  Google Scholar 

  20. Sarikaya A, Şen Ş, Çermik TF, Birtane M, Berkarda Ş. Evaluation of skeletal muscle metabolism and erythropoietin treatment response in patients with chronic renal failure with99mTc-sestamibi leg scintigraphy.Nucl Med Commun 2000; 21 (1): 83–87.

    Article  PubMed  CAS  Google Scholar 

  21. Sarikaya İ, Aygit AC, Candan L, Sarikaya A, Türkyilmaz M, Berkarda Ş. Assessment of tissue viability in frostbite injury by99mTc sestamibi scintigraphy in an experimental rabbit model.Eur J Nucl Med 2000; 27: 41–45.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson MA, Polgar J, Weightman D. Data on the distribution of fiber types on thirthy-six human muscles.J Neurol Sci 1973; 18: 111–129.

    Article  PubMed  CAS  Google Scholar 

  23. Prince FP, Hikida RS, Hagerman FC. Muscles fiber types in woman athletes and non-athletes.Pflugers Arch 1977; 371: 161–165.

    Article  PubMed  CAS  Google Scholar 

  24. Siegel ME, Stewart CA. Peripheral vascular disease. InPrinciples of Nuclear Medicine, Wagner HN (ed), 2nd ed., W.B. Saunders Comp., 1995: 859–880.

  25. Kim CK, Gupta NC. Dependency of standardized uptakes values of fluorine-18 fluorodeoxyglucose on body size: Comparison of body surface area correction and lean body mass correction.Nucl Med Commun 1996; 17: 890–894.

    Article  PubMed  CAS  Google Scholar 

  26. Shenton DW, Heppenstall RB, Chance B, Glasgow SG, Schnall MD, Sapega AA. Electrical stimulation of human muscle studied using31P-Nuclear Magnetic Resonance Spectroscopy.J Orthop Research 1986; 4: 204–211.

    Article  CAS  Google Scholar 

  27. Currier DP, Petrilli CR, Threlkeld AJ. Effect of graded electrical stimulation on blood flow to healthy muscle.Phys Ther 1986; 66: 937–943.

    PubMed  CAS  Google Scholar 

  28. Cabric M, Appell HJ, Resic A. Stereological analysis of capillaries in electrostimulated human muscles.Int J Sports Med 1987; 8: 327–330.

    Article  PubMed  CAS  Google Scholar 

  29. Henriksson J, Salmons S, Lowry OH. Chronic stimulation of mammalian muscle: enzyme and metabolic changes in individual fibres.Biomed Biochim Acta 1989; 48: 445–454.

    Google Scholar 

  30. Ericsson E, Haggmark T, Kiessling KH. Effect of electrical stimulation on human skeletel muscle.Int J Sports Med 1981; 2: 18.

    Article  Google Scholar 

  31. Beanlands RSB, Dawood F, Wen WH, McLaughlin PR, Butany J, D'amati G, et al. Are the kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability?Circulation 1990; 82: 1802–1814.

    PubMed  CAS  Google Scholar 

  32. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis[2-methoxyisobutylisonitrile]technetium[I] in cultured chick myocardial cells: mitochondrial and plasma membrane potential-dependence.Circulation 1990; 82: 1826–1838.

    PubMed  CAS  Google Scholar 

  33. Baker LL. Clinical uses of neuromuscular electrtical stimulation. In: Nelson RM, Currier DP (eds),Clinical Electrotherapy, Second Edition. Norwalk, Appleton and Lange, 1991: 143–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sarikaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekindil, Y., Sarikaya, A., Birtane, M. et al. 99mTc-sestamibi muscle scintigraphy to assess the response to neuromuscular electrical stimulation of normal quadriceps femoris muscle. Ann Nucl Med 15, 397–401 (2001). https://doi.org/10.1007/BF02988252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988252

Key words

Navigation