Abstract
Our previousin vivo study with rats has demonstrated that11C-labeled 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine ([11C]SA4503) is a potential radioligand for mapping CNS sigma1 receptors by positron emission tomography (PET). In the present study, we further characterized this ligand. The radiation absorbed-dose of [11C]SA4503 in humans estimated with the tissue distribution in mice, was higher in the liver, kidney and pancreas than in other organs studied, but was low enough for clinical use. The brain uptake of [11C]SA4503 in mice was reduced to approximately 60–70% by co-injection of carrier SA4503 and haloperidol, but not by co-injection of any of six ligands for sigma2 or other receptors, for which SA4503 showedin vitro >100 times weaker affinity than for sigma1 receptor. In the cat brain, the uptake in the cortex was higher than that in the cerebellum. The radioactivity in the cortex and cerebellum accumulated for the first 10 min and then gradually decreased until 81.5 min in the baseline measurement, but rapidly decreased in the carrier-loading condition. The receptor-mediated uptake was estimated to be approximately 60–65% of the total radioactivity in the cortex and cerebellum at 76 min after tracer injection. We have concluded that [11C]SA4503 has the potential for mapping sigma1 receptor by PET.
Similar content being viewed by others
References
Amano M, Yamada K, Matsuno K, Nabeshima T. Neuropharmacological effects of sigma ligands: Anxiolytic, antiamnesic and neuroprotective effects (abstract in English).Jpn J Psychopharmacol 16: 73–84, 1996.
Bem WT, Thomas GE, Mamone JY, Homan SM, Levy BK, Johnson FE, et al. Overexpression of σ receptors in nonneural human tumors.Cancer Res 51: 6558–6562, 1991.
Collier TL, O'Brien JC, Waterhouse RN. Synthesis of [18F]-1-(3-fluoropropyl)-4-(4-cyanophenoxymethyl)piperidine: a potential sigma-1 receptor radioligands for PET.J Label Compds Radiopharm 38: 786–794, 1996.
Dence CS, John CS, Bowen WD, Welch MJ. Synthesis and evaluation of [18F] labeled benzamides: High affinity sigma receptor ligands for PET imaging.Nucl Med Biol 24: 333–340, 1997.
Ding YS, Fowler JS, Dewey SL, Wolf AP, Logan J Gatley SJ, et al. Synthesis and PET studies of fluorine-18-BMY14802: A potential antipsychotic drug.J Nucl Med 34: 246–254, 1993.
Fujimura K, Matsumoto J, Niwa M, Kobayashi T, Kawashima Y, In Y, et al. Synthesis, structure and quantitative structure-activity relationships of σ receptor ligands, 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazines.Bioorg Med Chem 5: 1675–1683, 1997.
Hellewell SB, Bruce A, Feinstein G, Orringer J, Williams W, Bowen WD. Rat liver and kidney contain high densities of σ1 and σ2 receptors: characterization, by ligand binding and photoaffinity labeling.Eur J Pharmacol 268: 9–18, 1994.
Ishiwata K, Ido T, Mejia AA, Ichihashi M, Mishima Y. Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoro-d,l-phenylalanine: A target compound for PET and boron neutron capture therapy.Appl Radiat Isot 142: 325–328, 1991.
Ishiwata K, Noguchi J, Ishii S, Hatano K, Ito K, Nabeshima T, et al. Synthesis of [11C]NE-100 labeled in two different positions as a PET σ receptor ligand.Nucl Med Biol 25: 195–202, 1998.
John CS, Bowen WD, Fisher SJ, Lim BB, Geyer BC, Vilner BJ, et al. Synthesis,in vitro pharmacologic characterization, and preclinical evaluation ofN-[2-(1′-piperidinyl)-ethyl]-3-[125I]iodo-4-methoxybenzamide (P[125I]MBA) for imaging breast cancer.Nucl Med Biol 26: 377–382, 1999.
John CS, Bowen WD, Saga T, Kinuya S, Vilner BJ, Baumgold J, et al. A malignant melanoma imaging agent: Synthesis, characterization,in vitro binding and biodistribution of iodine-125-(2-piperidinylaminoethyl)4-iodobenzamide.J Nucl Med 34: 2169–2175, 1993.
John CS, Gluden ME, Vilner BJ, Bowen WD. Synthesis,in vitro validation andin vivo pharmacokinetics of [125I]N-[2-(4-iodophenyl)ethyl]-N-methyl-2-(1-piperidinyl)ethylamine: a high-affinity ligand for imaging sigma receptor positive tumors.Nucl Med Biol 23: 761–766, 1996.
John CS, Vilner BJ, Bowen WD. Synthesis and characterization of [125I]-N-(N-benzylpiperidin-4-yl)-4-iodobenzamide, a new receptor radiopharmaceutical: high-affinity binding to MCF-7 breast tumor cells.J Med Chem 37: 1737–1739, 1994.
John CS, Vilner BJ, Gulden ME, Efange SMN, Langason RB, Moody TW, et al. Synthesis and pharmacological characterization of 4-[125I]-N-(N-benzylpiperidin-4-yl)-4-iodobenzamide: a high affinity σ receptor ligand for potential imaging of breast cancer.Cancer Res 55: 3022–3027, 1995.
Kawamura K, Ishiwata K, Tajima H, Ishii S, Matsuno K, Homma Y, et al.In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors.Nucl Med Biol 27: 255–261, 2000.
Kawamura K, Ishiwata, K, Tajima H, Ishii S, Shimada Y, Matsuno K, et al. Synthesis andin vivo evaluation of [11C]SA6298 as a PET sigma1 receptor ligand.Nucl Med Biol 26: 915–922, 1999.
Kiesewater DO, de Costa B. Synthesis ofN 1-3-[18F]-fluoropropyl-N 4-2-([3,4-dichlorophenyl] ethyl)piperadine, a high affinity ligand for sigma receptor.J Label Compds Radiopharm 33: 639–643, 1993.
Matsuno K, Kobayashi T, Tanaka MK, Mita S. σ1-receptor subtypes is involved in the relief of behavioral despair in the mouse forced swimming test.Eur J Pharmacol 312: 267–271, 1996.
Matsuno K, Mita S. SA4503: a novel sigma1 receptor agonist.CNS Drug Rev 4: 1–24, 1998.
Matsuno K, Nakazawa M, Okamoto K, Kawashima Y, Mita S. Binding properties of SA4503 a novel and selective σ1 receptor agonist.Eur J Pharmacol 306: 271–279, 1996.
Matsuno K, Senda T, Kobayashi T, Okamoto K, Nakata K, Mita S. SA4503, a novel cognitive enhancer, with σ1 receptor agonistic properties.Behav Brain Res 83: 221–224, 1997.
Matsuno K, Senda T, Mita S. Correlation between potentiation of neurogenic twitch contraction and benzomorphan σ receptor binding potency in the mouse vas deferens.Eur J Phamacol 231: 451–457, 1993.
Maurice T, Lockhart BP. Neuroprotective and anti-amnesic potentials of sigma (σ) ligands.Prog Neuro-Psychopharmacol Biol Psychiat 21: 69–102, 1997.
Mejia AA, Nakamura T, Itoh M, Hatazawa J, Ishiwata K, Ido T, et al. Absorbed dose estimates in positron emission tomography studies based on the administration of18F-labeled radiopharmaceuticals.J Radiat Res 32: 243–261, 1991.
Michelot JM, Moreau M-FC, Labarre PG, Madelmont JC, Veyre AJ, Papon JM, et al. Synthesis and evaluation of new iodide-125 radiopharmaceuticals as potential tracers for malignant melanoma.J Nucl Med 31: 1573–1580, 1991.
Musachio JL, Scheffel U, Stathis M, Ravert HT, Mathews WB, et al. (+)-[C-11]cis-N-benzyl-normetazocine: a selective ligand for sigma receptorsin vivo.Life Sci 55: PL225-PL232, 1994.
Nabeshima T, Okuyama S. Physiological function of sigma receptors: Central pharmacological effects of sigma ligands (abstract in English).Jpn J Psychopharmacol 14: 51–76, 1994.
Sakiyama Y, Ishiwata K, Ishii K, Oda K, Toyama H, Ishii S, et al. Evaluation of the brain uptake properties of [1-11C]labeled hexanoate in anesthetized cats by mean of positron emission tomography.Ann Nucl Med 10: 361–366, 1996.
Sakiyama Y, Toyama H, Oda K, Ishii S, Ishiwata K, Ishii K, et al. A stereotaxic method of anatomical lacalization by means of H2 15O positron emission tomography applicable to the brain activation study in cats: registration of images of cerebral blood flow to brain atlas.Ann Nucl Med 11: 315–319, 1997.
Senda T, Matsuno K, Mita S. Differences in the high affinity sites of σ receptors between guinea pig and rat brain.Neurosci Res Commun 17: 97–105, 1995.
Seth P, Fei YJ, Li HW, Huang W, Leibach FH, Ganapathy V. Cloning and functional characterization of a σ receptor from rat brain.J Neurochem 70: 922–931, 1998.
Shimada Y, Uemura K, Ardekani BA, Nagaoka T, Ishiwata K, Toyama H, et al. Application of PET-MRI registration techniques to cat brain imaging.J Neurosci Methods 27: 121–125, 2000.
Shiue CY, Bai LQ, Shiue GG, Rysavy JA, Pleus RC, Hui H, et al. Synthesis (±)-[18F]-BMY14802, its enantiomers and their anatomical distributions in rodents.Nucl Med Biol 20: 625–630, 1993.
Shiue CY, Shiue GG, Zhang SX, Wilder S, Greenberg JH, Benard F, et al.N-(N-benzylpiperidin-4-yl)-2-[18F]fluorobenzamide: a potential ligand for PET imaging of σ receptors.Nucl Med Biol 24: 671–676, 1997.
Snider RS, Niemer WT.A Stereotaxic Atlas of the Cat Brain. The University of the Chicago Press, 1961.
Su TP, London ED, Jaffe JH. Steroid binding at σ receptors suggests a link between endocrine, nervous, immune systems.Science 240: 219–221, 1988.
Vilner BJ, John CS, Bowen WD. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 55: 408–413, 1995.
Waterhouse RN, Collier TL.In vivo evaluation of [18F]1-(3-fluoropropyl)-4-(4-cyanophenoxymethyl)piperidine: a selective sigma-1 receptor radioligand for PET.Nucl Med Biol 24: 127–134, 1997.
Waterhouse RN, Collier TL, O'Brien JC, Synthesis of a selective sigma receptor radioligand for SPECT: [123I]-1-(2-Hydroxyethyl)-4-(4-iodophenoxymethyl)piperidine.J Label Compds Radiopharm 38: 595–605, 1996.
Wolfe SA-Jr, Culp SG, De Souza EB, σ-receptors in endocrine organs: identification, characterization, and autoradiogaphic localization on rat pituitary, adrenal, testis and ovary.Endocrinology 124: 1160–1172, 1989.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kawamura, K., Ishiwata, K., Shimada, Y. et al. Preclinical evaluation of [11C]SA4503: radiation dosimetry,in vivo selectivity and PET imaging of sigma1 receptors in the cat brain. Ann Nucl Med 14, 285–292 (2000). https://doi.org/10.1007/BF02988211
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02988211