Skip to main content
Log in

Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

A model based on thein vitro-to-glasshouse system used in potato seed production programs was implemented to investigate the effects of abscisic acid (ABA) on the induction of freezing tolerance in microplants of two potato cultivars with different sensitivity. Microplants 28 days old, cultured in the presence of ABA, were transferred to soil and exposed to -6 C for 4 h. ABA enhanced survival two-fold but inhibited stem growth by 91%. Recovery from the ABA effect was evaluated underin vitro and glasshouse conditions. Plants recovered from the ABA stress had increased growth rate. When microplants incubated in ABA were subcultured to ABA-free medium for 28 days, growth increased 10.4 and 6.9-fold, whereas the growth in controls was 0.36 and 0.6-fold for ‘Atlantic’ and ‘Alpha’, respectively. Enzymatic activities of peroxidase and ascorbate peroxidase, along with H2O2 content, significantly increased in microplants incubated in ABA. When the microplants were transferred to ABA-free medium, these parameters declined to control levels. No significant differences were obtained for any of the parameters evaluated in microplants transferred for 120 days to a glasshouse for recovery. ABA did not induce long-term effects on tuber production. These results demonstrate the potential of ABA in the induction of freezing tolerance in microplants transferred to soil. Responses to ABA were associated with the antioxidant system and H2O2 content in the induction of freezing tolerance in potato.

Resumen

Un modelo basado en el sistemain vitro- invernadero usado en programas de producción de semilla, fue implementado para investigar el efecto del acido abscísico (ABA) en la tolerancia a frio en microplantas de dos variedades de papa con diferente susceptibilidad. Microplantas de 28 días de edad preincubadas en ABA, se transfirieron a suelo y se expusieron a -6 C por 4 h. ABA incremento hasta 2-veces la supervivencia pero inhibió el crecimiento del tallo hasta un 91%, por lo que, se evaluó la recuperación del efecto del ABA bajo condicionesin vitro e invernadero. Las plantas recuperadas del estrés ocasionado por ABA, notablemente incrementaron su tasa de crecimiento. Cuando las microplantas incubadas en ABA se cultivaron en medio MS sin ABA por 28 días, el crecimiento incremento 10.4 y 6.9 veces mientras, los controles crecieron solo 0.36 y 0.6 veces para ‘Atlantic’ y ‘Alpha’, respectivamente. Las actividades enzimáticas de la ascorbato peroxidasa, peroxidasa y el contenido de H2O2 se incrementaron significativamente con respecto al control en microplantas incubadas en ABA. Cuando las microplantas se transfirieron a medio sin ABA, estos parámetros disminuyeron al nivel de los controles. Las microplantas recuperadas por 120 días en condiciones de invernadero no mostraron diferencias significativas en ninguno de los parámetros evaluados. El ABA no indujo efectos a largo plazo sobre la producción de tubérculos. Estos resultados demuestran el potencial del ABA en la inducción de tolerancia a baja temperatura en microplantas transferidas a suelo. Las respuestas al ABA estuvieron asociadas al sistema antioxidante y al contenido de H2O2 en la tolerancia a baja temperatura en papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

POX:

peroxidase

APX:

ascorbate peroxidase

MS:

Murashige-Skoog

ROS:

reactive oxygen species

EDTA:

ethylenediaminetetraacetic acid

DTT:

1,4-dithio-DL-threitol

PVP:

polyvinylpyrrolidone

Literature Cited

  • Anderson MD, TK Prasad and CR Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol 109:1247–1257.

    PubMed  CAS  Google Scholar 

  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bray EA, J Bailey-Serres and E Weretilnyk. 2000. Responses to abiotic stress.In: BB Buchanan, W Gruissem, RL Jones (eds), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD. pp 1158–1203.

    Google Scholar 

  • BrowseJ and Z Xin. 2001. Temperature sensing and cold acclimation. Physiology and Metabolism 4:241–246.

    CAS  Google Scholar 

  • Chen H-H, PH Li and ML Brenner. 1983. Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71:362–365.

    PubMed  CAS  Google Scholar 

  • Chen THH and LV Gusta, 1983. Abscisic acid-induced freezing tolerance in cultured plant cells. Plant Physiol 73:71–75.

    PubMed  CAS  Google Scholar 

  • DesikanR, M-K Cheung, J Bright, D Henson, JT Hancock and SJ Neill. 2004. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot 55:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Espinoza NO, R Estrada, D Silva-Rodríguez, P Tovar, R Lizarraga and JH Dodds. 1986. The potato: A model crop plant for tissue culture. Outlook on Agriculture 15:21–26.

    Google Scholar 

  • Finkelstein RR, SSL Gampala and CD Rock. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell. Supplement 15-45. Foyer CH and G Noctor. 2005. Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071.

    Google Scholar 

  • Foyer CH, H Vanacker, LD Gomez and J Harbinson. 2002. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: Review. Plant Physiol Biochem 40:659–668.

    Article  CAS  Google Scholar 

  • GongM, B Chen, ZG Li and LH Guo. 2001. Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedling and involvement of H2O2. J Plant Physiol 158:1125–1130.

    Article  CAS  Google Scholar 

  • GongM, Y-J Li and S-Z Chen. 1998. Abscisic acid-induced thermotolerance in maize seedlings mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–496.

    CAS  Google Scholar 

  • Guan LM and JG Scandalios. 1998. Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes. Physiol Plant 104:412–422.

    Article  Google Scholar 

  • Guan LM, J Zhao and JG Scandalios. 2000. Cis-elements and trans-factors that regulate expression of the maizeCall antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant Journal 22:87–95.

    Article  PubMed  CAS  Google Scholar 

  • HothS, M Morgate, JP Sanchez, MK Hanafey, ST Tingey and N-H Chua. 2002. Genome-wide gene expression profiling inArabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in theabi1-1 mutant. J Cell Sci 115:4891–4900.

    Article  PubMed  CAS  Google Scholar 

  • JiangM and J Zhang. 2001. Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273.

    Article  PubMed  CAS  Google Scholar 

  • JiangM and J Zhang. 2002a Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic Res 36:1001–1015.

    Article  PubMed  CAS  Google Scholar 

  • JiangM and J Zhang. 2002b. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410.

    Article  PubMed  CAS  Google Scholar 

  • JiménezA, JA Hernández, LAdel Rio and F Sevilla. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284.

    PubMed  Google Scholar 

  • Kang HM and ME Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576.

    Article  PubMed  CAS  Google Scholar 

  • KocsyG, G Galiba and C Brunold. 2001. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113:158–164.

    Article  PubMed  CAS  Google Scholar 

  • LalkI and K Dörffling. 1985. Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol Plant 63:287–292.

    Article  CAS  Google Scholar 

  • LangV, P Heino and ET Palva 1989. Low temperature acclimation and treatment with exogenous abscisic acid induce common polypeptides inArabidopsis thaliana (L) Heynh. Theor Appl Genet 77:729–734.

    Article  Google Scholar 

  • Lee T-M and Y-H Lin. 1996. Peroxidase activity in ethylene-, ABA-, or MeJA-treated rice (Oryza sativa L.) roots. Bot Bull Acad Sin 37:201–207.

    CAS  Google Scholar 

  • López-DelgadoH and G Carrillo-Castañeda. 1996. Acetylsalicylic acid: Its effects on a highly expressed phosphatase fromSolanum cardiophyllum. Biotec Applic 13:186–189.

    Google Scholar 

  • MäntyläE, V Lang and ET Palva. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation and accumulation of LTI78 and RAB18 proteins inArabidopsis thaliana. Plant Physiol 107:141–148.

    PubMed  Google Scholar 

  • MinamiA, M Nagao, K Arakawa, S Fujikawa and D Takesawa. 2003. Abscisic acid-induced freezing tolerance in the mossPhyscomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol 160:475–483.

    Article  PubMed  CAS  Google Scholar 

  • MittlerR and BA Zilinskas. 1993. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546.

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra SS, RJ Poole and RS Dhindsa. 1988. Abscisic acid-regulated gene expression in relation to freezing tolerance in alfalfa. Plant Physiol 87:468473.

    Article  Google Scholar 

  • Mora-Herrera ME and HA López-Delgado. 2006. Tolerance to low temperature, induced by salicylic acid and hydrogen peroxide in potato microplants. Rev Fitotec Mex 29:81–85.

    Google Scholar 

  • Mora-Herrera ME, H López-Delgado, A Castillo-Morales and CH Foyer. 2005. Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plant 125:430–440.

    CAS  Google Scholar 

  • MurashigeT and F Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • MurataN and DA Los. 1997. Membrane fluidity and temperature perception. Plant Physiol 115:875–879.

    PubMed  CAS  Google Scholar 

  • NakanoY and K Asada 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880.

    CAS  Google Scholar 

  • Neill SJ, R Desikan, A Clarke, D Hurst and JT Hancock. 2002a Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247.

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, R Desikan and JT Hancock. 2002b. Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–95.

    Article  PubMed  CAS  Google Scholar 

  • Pearce RS. 2001. Plant freezing and damage. Ann Bot 87:417–424.

    Article  CAS  Google Scholar 

  • Pei Z-M, Y Murata, G Benning, S Thomine, B Klusener, GJ Allen, E Grill and JI Schroeder. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734.

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, MD Anderson, BA Martin and CR Stewart. 1994a Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74.

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, MD Anderson, BA Martin and CR Stewart. 1994b. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 105:619–627.

    PubMed  CAS  Google Scholar 

  • PrásilI and J Zámecník. 1998. The use of conductivity measurement meted for assessing freezing injury. I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ Exp Bot 40:1–10.

    Article  Google Scholar 

  • Robertson AJ, MJT Reaney, RW Wilen, N Lamb, SR Abrams and LV Gusta. 1994. Effects of abscisic acid metabolites and analogs on freezing tolerance and gene expression in bromegrass (Bromis inermis Leyss) cell cultures. Plant Physiol 105:823–830.

    Article  PubMed  CAS  Google Scholar 

  • RockC. 2000. Pathways to abscisic acid-regulated gene expression. New Phytol 148:357–396.

    Article  CAS  Google Scholar 

  • Saltveit ME and LL Morris. 1990. Overview on chilling injury of horticultural crops.In: CY Wang (ed), Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, FL. pp 3–15.

    Google Scholar 

  • SatoY, T Muraskami, H Funatsuki, S Matsuba, H Saruyama and M Tanida 2000. Heat shock-mediatedAPX gene expression and protection against chilling injury in rice seedlings. J Exp Bot 52:145–151.

    Article  Google Scholar 

  • Scandalios JG. 2005. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research 38:995–1014.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava MK and UN Dwivedi. 1998. Salicylic acid modulates glutathione metabolism in pea seedlings. J Plant Physiol 153:409–414.

    CAS  Google Scholar 

  • SzalaiG, T Janda, E Páldi and Z Szigeti. 1996. Role of light in the development of post-chilling symptoms in maize. J Plant Physiol 148:378–383.

    CAS  Google Scholar 

  • TamminenI, P Mäkelä, P Heino and ET Palva. 2001. Ectopic expression ofABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature inArabidopsis thaliana. Plant Journal 25:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow ME 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8.

    Article  PubMed  CAS  Google Scholar 

  • ViswanathanC and JK Zhu. 2002. Molecular genetic analysis of coldregulated gene transcription. Philos Trans R Soc Lond B 357:877–886.

    Article  CAS  Google Scholar 

  • Wanner LA and O Junttila. 1999. Cold-induced freezing tolerance inArabidopsis. Plant Physiol 120:391400.

    Article  Google Scholar 

  • WarmE and GG Laties. 1982. Quantification of hydrogen peroxide in plant extracts by the chemiluminescence reaction with luminol. Phytochem 21:827–831.

    Article  CAS  Google Scholar 

  • ZhangX, YC Miao, GY An, Y Zhou, ZP Shangguan, JF Gaon and CP Song. 2001a. K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling inVicia guard cells. Cell Res 11:37–43

    Article  PubMed  Google Scholar 

  • ZhangX, L Zhang, F Dong, J Gao, DW Galbraith and Ch-P Song. 2001b. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure inVicia faba. Plant Physiol 126:1438–1448.

    Article  PubMed  CAS  Google Scholar 

  • ZhouB, Z Guo and Z Liu. 2005a Effects of abscisic acid on antioxidant systems ofStylosanthes guianensis (Aublet) Sw. under chilling stress. Crop Ecology, Management and Quality 45:599–605.

    CAS  Google Scholar 

  • ZhouB, Z Gou, J Xing and B Huang. 2005b. Nitric oxide is involved in abscisic acid-induced antioxidant activities inStylosanthes guianensis. J Exp Bot 56:3223–3228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. López-Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora-Herrera, M.E., López-Delgado, H.A. Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment. Amer J of Potato Res 84, 467–475 (2007). https://doi.org/10.1007/BF02987883

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987883

Additional Key Words

Navigation