Skip to main content
Log in

Impaired coronary microvascular function in diabetics

  • Original Artisies
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Global and regional myocardial uptake was determined with technetium-99m tetrofosmin and a 4 hour exercise (370 MBq iv) and rest (740 MBq iv) protocol, in 24 patients with non-insulin dependent diabetes mellitus and in 22 control subjects. The purpose of this study was to evaluate impaired coronary microvascular function in diabetics by measurement of % uptake increase in myocardial counts. The parameter of % uptake increase (°MTU) was calculated as the ratio of exercise counts to rest myocardial counts with correction of myocardial uptake for dose administered and physical decay between the exercise study and the rest study. Global °MTU was significantly lower in the diabetics than in control subjects (14.4±5.4% vs. 21.7±8.5%, p<0.01). Regional °MTU in each of 4 left ventricular regions (anterior, septal, inferior, posterolateral) was significantly lower in the diabetic group than in the control group (p<0.01) respectively, but there were no significant differences between °MTU in the 4 left ventricular regions in the same group. °MTU was useful as a non-invasive means of evaluating impaired coronary microvascular function in diabetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Factor SM, Okun EM, Minase T. Capillary microaneurysms in the human diabetic heart.N Engl J Med 302: 384–388, 1980.

    CAS  PubMed  Google Scholar 

  2. Sutherland CG, Fisher BM, Frier BM, Dargie HJ, Lindop GBM. Endomyocardial biopsy pathology in insulin-dependent patients with abnormal ventricular function.Histopathology 14: 593–602, 1988.

    Article  Google Scholar 

  3. Fein FS, Sonnenblick EH. Diabetic cardiomyopathy.Prog Cardiovasc Dis 27: 255–270, 1985.

    Article  CAS  PubMed  Google Scholar 

  4. Zarich SW, Nesto RW. Diabetic cardiomyopathy.Am Heart J 118: 1000–1012, 1989.

    Article  CAS  PubMed  Google Scholar 

  5. Yarom R, Zirkin H, Stammler G, Rose AG. Human coronary microvessels in diabetes and ischaemia. Morphometric study of autopsy material.J Pathol 166: 265–270, 1992.

    Article  CAS  PubMed  Google Scholar 

  6. Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus.Circulation 91: 635–640, 1995.

    PubMed  Google Scholar 

  7. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impairment of coronary vascular reserve and Achinduced coronary vasodilatation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function.Diabetes 42: 1017–1025, 1993.

    Article  CAS  PubMed  Google Scholar 

  8. Marcus M, Wright C, Doty D, Eastham C, Laughlin D, Krumm P, et al. Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans.Circ Res 49: 877–891, 1981.

    CAS  PubMed  Google Scholar 

  9. Wilson RF, Laughlin DE, Ackel PH, Chilian WM, Holida MD, Hartley CJ, et al. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man.Circulation 72: 82–92, 1985.

    CAS  PubMed  Google Scholar 

  10. Doucett JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity.Circulation 85: 1899–1911, 1992.

    Google Scholar 

  11. Ofili EO, Labovitz AJ, Kern MJ. Coronary flow velocity dynamics in normal and diseased arteries.Am J Cadiol 71: 3D-9D, 1993.

    Article  CAS  Google Scholar 

  12. White CW. Clinical applications of Doppler coronary flow reserve measurements.Am J Cardiol 71: 10D-16D, 1993.

    Article  CAS  PubMed  Google Scholar 

  13. Yokoyama I, Ohtake T, Momomura S, Yonekura K, Woo-Soo S, Nishikawa J, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM.Diabetes 47: 119–124, 1998.

    Article  CAS  PubMed  Google Scholar 

  14. Pikanen OP, Nuutila P, Raitakari OT, Ronnemaa T, Koskinen PJ, Iida H, et al. Coronary flow reserve is reduced in young men with IDDM.Diabetes 47: 248–254, 1998.

    Article  Google Scholar 

  15. Davidson CJ, Fishman RF, Bonow RO. Cardiac catheterization.In Heart Disease, Braunwald E (ed.), 5th ed., Philadelphia, W.B. Saunders, Inc., pp. 199–200, 1997.

    Google Scholar 

  16. Opherk D, Mall G, Zebe H, Scwarz F, Weihe E, Manthey J, et al. Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries.Circulation 69 (1): 1–7, 1984.

    CAS  PubMed  Google Scholar 

  17. Lucarini AR, Picano E, Salvetti A. Coronary microvascular disease in hypertensives.Clin Exp Hypertens A14: 55–66, 1992.

    Article  CAS  PubMed  Google Scholar 

  18. Cannon RO 3d, Watson RM, Rosing DR, Epstein SE. Angina caused by reduced vasodilator reserve of the small coronary arteries.J Am Coll Cardiol 1: 1359–1373, 1983.

    PubMed  Google Scholar 

  19. Legrand V, Hodgson JM, Bates ER, Aueron FM, Mancini GB, Smith JS, et al. Abnormal coronary flow reserve and abnormal radionuclide exercise test results in patients with normal coronary angiograms.J Am Coll Cardiol 6: 1245–1253, 1985.

    Article  CAS  PubMed  Google Scholar 

  20. Kinoshita N, Sugihara H, Nakamura T, Ito K, Azuma A, Maeda T, et al. A calculation of an index of the coronary flow reserve using exercise and rest myocardial SPECT with technetium-99m tetrofosmin.KAKU IGAKU (Jpn J Nucl Med) 34: 45–48, 1997.

    CAS  Google Scholar 

  21. Hori A, Taki J, Nakajima K, Shimizu M, Tonami N. Evaluation of ischemic heart disease using the index of relative99mTc-tetrofosmin uptake increase at exercise.KAKU IGAKU (Jpn J Nucl Med) 34: 433–441, 1997.

    CAS  Google Scholar 

  22. Takahashi K, Takeishi Y, Fujiwara S, Atsumi H, Akutsu T, Komatani A, et al. Quantitative assessment of an increase of myocardial99mTc-MIBI accumulation during exercise —usefulness of response rate—.KAKU IGAKU (Jpn J Nucl Med) 33: 779–784, 1996.

    CAS  Google Scholar 

  23. Fujiwara S, Takeishi Y, Atsumi H, Chiba J, Takahashi K, Tomoike H. Quantitative assessment of myocardial99mTc-sestamibi uptake during exercise: usefulness of response rate for assessing severity of coronary artery disease.Jpn Circ J 62: 592–598, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Buell U, Kaiser HJ, Dupont F, Uebis R, Kleinhans E, Hanrath P. Methoxyisobutylisonitrile (MIBI) Tc 99m SPECT to establish a correlate to coronary flow reserve, the perfusion reserve, from global and regional myocardial uptake after exercise and rest.Eur J Nucl Med 16: 3–9, 1990.

    Article  CAS  PubMed  Google Scholar 

  25. Nelson RR, Gobel FL, Jorgensen CR, Wang K, Wang Y, Taylor HL. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise.Circulation 50: 1179–1189, 1974.

    CAS  PubMed  Google Scholar 

  26. Durante W, Sunahara FA, Sen AK. Effect of diabetes on metabolic coronary dilatation in the rat.Cardiovasc Res 23: 40–45, 1989.

    Article  CAS  PubMed  Google Scholar 

  27. Downing SE, Lee JC, Weinstein EM. Coronary dilator actions of adenosine and CO2 in experimental diabetes.Am J Physiol 243: H252-H258, 1982.

    CAS  PubMed  Google Scholar 

  28. Koltai MZ, Roesen P, Hadhazy P, Ballagi-Podany G, Koszeghy A, Pogatsa G. Effects of hypoxia and adrenergic stimulation induced alterations in PGI2 synthesis by diabetic coronary arteries.J Diabet Complications 2: 5–7, 1988.

    Article  CAS  PubMed  Google Scholar 

  29. Berne RM, Levy MN. Coronary circulation and cardiac metabolism.In Cardiovascular Physiology, Berne RM, Levy MN (eds.), 2nd ed., Saint Louis, The C.V. Mosby company, Inc., pp. 206–217, 1972.

    Google Scholar 

  30. Sinusas AJ, Shi Q, Saltzberg MT, Vitols P, Jain D, Wackers FJ, et al. Technetium-99m-tetrofosmin to assess myocardial blood flow: experimental validation in an intact canine model of ischemia.J Nucl Med 35: 664–671, 1994.

    CAS  PubMed  Google Scholar 

  31. Platts EA, North TL, Pickett RD, Kelly JD. Mechanism of uptake of technetium-tetrofosmin. I: uptake into isolated adult rat ventricular myocytes and subcellular localization.J Nucl Cardiol 2: 317–326, 1995.

    Article  CAS  PubMed  Google Scholar 

  32. Younes A, Songadele JA, Maublant J, Platts E, Pickett R, Veyre A. Mechanism of uptake of technetium-tetrofosmin. II: uptake into isolated adult rat heart mitochondria.J Nucl Cardiol 2: 327–333, 1995.

    Article  CAS  PubMed  Google Scholar 

  33. Scharmroth L. Electrophysiology and electropathology.In The Electrocardiology of Coronary Artery Disease, Scharmroth L (ed.), 1st ed., Oxford London Edinburgh Melbourne, Blackwell Scientific publications, pp. 11–24, 1977.

    Google Scholar 

  34. Mahta JL. Endothelium, coronary vasodilation, and organic nitrates.Am Heart J 129 (2): 382–391, 1995.

    Article  Google Scholar 

  35. Nitenberg A, Paycha F, Ledoux S, Sachs R, Attali JR, Valensi P. Coronary artery responses to physiological stimuli are improved by deferoxamine but not byl-arginine in non-insulin-dependent diabetic patients with angiographically normal coronary arteries and no other risk factors.Circulation 97: 736–743, 1998.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsujimoto, G. Impaired coronary microvascular function in diabetics. Ann Nucl Med 14, 165–172 (2000). https://doi.org/10.1007/BF02987855

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987855

Key words

Navigation