Skip to main content
Log in

Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis

  • Research Articles
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Life cycle analysis is one of the tools in the assessment of the sustainability of technological options. It takes into account all effects on the ecosystem and the population which may endanger the possibilities of current and future generations. However, the main bottleneck in current LCA methodologies is the balancing of different effects, being all quantified on different scales. In this work, a methodology is proposed, which allows one to quantify different effects of the production, consumption and disposal of goods, and services on a single scale. The basis of the methodology is the second law of thermodynamics. All production, consumption and disposal processes affecting the ecosystem and the population, are quantified in terms of loss of exergy. The exergy content of a material is the maximum amount of energy which can be transformed into work at given environmental conditions. Next to the elaboration of the methodology, the new approach is illustrated by examples of the production of synthetic organic polymers, inorganic building insulation materials and different waste gas treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendoricchio G, Jørgensen SE (1997): Exergy as goal function of ecosystems dynamic. Ecol Model102, 5–15

    Article  CAS  Google Scholar 

  • Boustead I (1993): Eco-profiles of the European plastics industry, Report 3: Polyethylene and polypropylene. Brussels, PWMI, 17 pp

    Google Scholar 

  • Boustead I (1995): Eco-profiles of the European plastics industry, Report 8: Polyethylene terephthalate (PET). Brussels, APME, 9 pp

    Google Scholar 

  • Boustead I (1997): Eco-profiles of the European plastics industry, Report 4: Polystyrene. Brussels, APME, 33 pp

    Google Scholar 

  • Boustead I (1998): Eco-profiles of the European plastics industry, Report 6: Polyvinyl chloride. Brussels, APME, 59 pp

    Google Scholar 

  • Çengel YA, Boles MA (1994): Thermodynamics, an engineering approach, 2nd ed, McGraw-Hill Inc, New York, pp 387–448

    Google Scholar 

  • Cornelissen RL (1997): Thermodynamics and sustainable development. PhD thesis at Universiteit Twente. Cornelissen, Enschede, 150 pp

  • Dewulf J, Van Langenhove H, Mulder J, van den Berg MMD, van der Kooi HJ, de Swaan Arons J (2000): Illustrations towards quantifying the sustainability of technology. Green Chem2, 108–114

    Article  CAS  Google Scholar 

  • Dewulf J, Van Langenhove H, Dirckx J (2001): Exergy analysis in the assessment of the sustainability of waste gas treatment systems. Sci Tot Environ273, 41–52

    Article  CAS  Google Scholar 

  • Gaggioli RA (1999): Reflections on the history and future of exergy, in Proc of ECOS ’99, June 8–10, 1999, Eds Ishida M, Tsatsaronis G, Moran MJ, Kataoka H, Tokyo Institute of Technology, Tokyo, Japan, pp 5–13

    Google Scholar 

  • Goedkoop M, Spriensma R (2000a): The eco-indicator ’99. A damage oriented method for Life Cycle Impact Assessment. Methodology Report. Downloaded fromwww.pre.nl. 17 April 2000. 2nd ed, Pré Consultants BV, Amersfoort, 142 pp

    Google Scholar 

  • Goedkoop M, Spriensma R (2000b): The eco-indicator ’99. A damage oriented method for Life Cycle Impact Assessment. Methodology Annex. Downloaded fromwww.pre.nl. 17 April 2000. 2nd ed, Pré Consultants BV, Amersfoort, 87 pp

    Google Scholar 

  • Heijungs R, Guinée JB, Hupes G, Lankreijer RM, De Haes UHA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, Van Duin R and De Goede HP (1992): Milieugerichte levenscyclusanalyse, Handleiding. Centrum voor Milieukunde, Leiden, 100 pp

    Google Scholar 

  • Human Development Report, United Nations Development Programme (UNDP), Oxford University Press, New York, 1999, 240 pp

    Google Scholar 

  • ISO, Environmental management — Life cycle assessment — Principles and framework, ISO14040,1997

  • Johansson A (1992): Clean technology. Lewis Publishers, Boca Raton, 196 pp

    Google Scholar 

  • Jørgensen SE (1999): State-of-the-art of ecological modelling with emphasis on development of structural dynamic models. Ecol Model 120, 75–96

    Article  Google Scholar 

  • Jørgensen SE, Nielsen SN, Mejer H (1995): Emergy, environ, exergy and ecological modelling. Ecol Model 77, 99–109

    Article  Google Scholar 

  • Kotas TJ (1985): The exergy method of thermal plant analysis. Butterwoods, London, 296 pp

    Google Scholar 

  • Lindeijer E, van Kampen M, Fraanje P, van Dobben H, Nabuurs GJ, Schouwenberg E, Prins D, Dankers N, Leopold M (1998): Biodiversity and life support indicators for land use impacts in LCA. Publication series raw materials No 1998/07. IVAM Environmental Research & Institute for Forestry and Nature Research. Amsterdam & Wageningen. 58 pp + app

    Google Scholar 

  • Meier MA (1997): Eco-efficiency evaluation of waste gas purification systems in the chemical industry. LCA Documents Vol 2. Klöpffer W, Hutzinger O, Eds, Eco-informa Press, Bayreuth, 1997, 271 pp

    Google Scholar 

  • Moran MJ (1989): Availability analysis, a guide to efficient energy use. The American Society of Mechanical Engineers, New York, 260 pp

    Google Scholar 

  • Pré Consultants (2000): Eco-indicator ’99. The triangle concept. Pré Consultants BV, Amersfoort,http://www.pre.nl/eco-indicator99/triangle.htm. viewed on 14 July, 2000

  • Szargut J, Motris DR, Steward FR (1988): Exergy analysis of thermal, chemical and metallurgical processes. Hemisphere Publ Corp, New York/Springer Verlag, Berlin, 332 pp

    Google Scholar 

  • Weibel T, Stritz A (1995): Ökoinventare und Wirkungsbilanzen von Baumaterialen — Grundlagen für den ökologischen Vergleich von Hochbaukonstruktionen. Zürich, ESU-Reihe Nr 1/95, Gruppe Energie-Stoffe-Umwelt (ESU), Laboratorium für Energiesysteme, ETH Zürich

    Google Scholar 

  • Xu F-L, Jørgensen SE, Tao S (1999): Ecological indicators for assessing freshwater ecosystem health. Ecol Model116, 77–106

    Article  CAS  Google Scholar 

  • Zhou J, Ma S, Hinman GW (1996): Ecological exergy analysis: a new method for ecological energetics research, Ecol Model84, 291–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman Van Langenhove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewulf, J., Van Langenhove, H. Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis. Environ Sci & Pollut Res 9, 267–273 (2002). https://doi.org/10.1007/BF02987502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02987502

Keywords

Navigation